

2

Go Bootcamp

Everything you need to know to get started with Go.

Matt Aimonetti

ii

Contents

Preface v

1 Intro 1
1.1 Objectives . 2

1.1.1 Knowledge . 2
1.1.2 Skills . 2
1.1.3 Attitudes . 3

2 The Basics 5
2.1 Variables & inferred typing 5
2.2 Constants . 7
2.3 Printing Constants and Variables 8
2.4 Packages and imports . 9
2.5 Code location . 10
2.6 Exported names . 11
2.7 Functions, signature, return values, named results 12
2.8 Pointers . 14
2.9 Mutability . 15

3 Types 17
3.1 Basic types . 17
3.2 Type conversion . 18
3.3 Type assertion . 19
3.4 Structs . 21
3.5 Initializing . 23

iii

iv CONTENTS

3.6 Composition vs inheritance 24
3.7 Exercise . 29

3.7.1 Solution . 30

4 Collection Types 33
4.1 Arrays . 33

4.1.1 Printing arrays . 34
4.1.2 Multi-dimensional arrays 35

4.2 Slices . 36
4.2.1 Slicing a slice . 37
4.2.2 Making slices . 38
4.2.3 Appending to a slice 38
4.2.4 Length . 40
4.2.5 Nil slices . 40
4.2.6 Resources . 41

4.3 Range . 41
4.3.1 Break & continue . 43
4.3.2 Range and maps . 44
4.3.3 Exercise . 44
4.3.4 Solution . 45

4.4 Maps . 46
4.4.1 Mutating maps . 47
4.4.2 Resources . 48
4.4.3 Exercise . 48
4.4.4 Solution . 49

5 Control flow 51
5.1 If statement . 51
5.2 For Loop . 52
5.3 Switch case statement . 53
5.4 Exercise . 56
5.5 Solution . 57

CONTENTS v

6 Methods 59
6.1 Code organization . 60
6.2 Type aliasing . 61
6.3 Method receivers . 62

7 Interfaces 65
7.1 Interfaces are satisfied implicitly 67
7.2 Errors . 68
7.3 Exercise: Errors . 69

7.3.1 Solution . 69

8 Concurrency 71
8.1 Goroutines . 72
8.2 Channels . 73

8.2.1 Buffered channels 74
8.3 Range and close . 75
8.4 Select . 77

8.4.1 Default case . 77
8.4.2 Timeout . 78

8.5 Exercise: Equivalent Binary Trees 79
8.5.1 Solution . 81

9 Get Setup 83
9.1 OS X . 83

9.1.1 Setup your paths . 83
9.1.2 Install mercurial and bazaar 84

9.2 Windows . 84
9.3 Linux . 84
9.4 Extras . 85

10 Get Your Feet Wet 87

11 Tips and Tricks 89
11.1 140 char tips . 89

vi CONTENTS

11.2 goimports . 90
11.3 Organization . 90
11.4 Custom Constructors . 90
11.5 Breaking down code in packages 91
11.6 Sets . 91
11.7 Dependency package management 93
11.8 Using errors . 94
11.9 Quick look at some compiler’s optimizations 94
11.10Expvar . 96
11.11Set the build id using git’s SHA 97
11.12How to see what packages my app imports 98
11.13Web resources . 98

12 Exercises 99

Preface
Last updated: July 7, 2014

Cover art by Erick Zelaya sponsored by Ardan Studios
The Gopher character on the cover is based on the Go mascot designed by

Renée French and copyrighted under the Creative Commons Attribution 3.0
license.

This book is a companion book to the Go Bootcamp event organized for
the first time in Santa Monica CA in March 2014.

You don’t need to install Go to read this book and follow along. This book
was designed to delay the setup process and let you evaluate Go without having
to go the installation process. All examples and solutions are available online
in an environment allowing you to execute code right in the browser.

vii

http://erickzelaya.me/
http://www.ardanstudios.com/
http://reneefrench.blogspot.com/
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

viii PREFACE

Chapter 1

Intro
The very first Go Bootcamp event was put together by Matt Aimonetti from
Splice with the support of a long list of volunteers.

• Francesc Campoy

• Mitchell Hashimoto

• Evan Phoenix

• Jeremy Saenz

• Nic Williams

• Ross Hale

Content and review has been provided by various members of the commu-
nity, if you want to add content or provide corrections, feel free to send a pull
request to this book’s git repo.

Git hosting for this book is provided by GitHub and is available here.
This companion book contains material initially written specifically for this

event as well as content from Google & the Go team under Creative Commons
Attribution 3.0 License and code under licensed under a BSD license. The
rest of of the content is also provided under Creative Commons Attribution 3.0
License.

1

http://matt.aimonetti.net
https://splice.com
https://twitter.com/francesc
https://twitter.com/mitchellh
https://twitter.com/evanphx
https://twitter.com/codegangsta
https://twitter.com/drnic
https://twitter.com/rrrosss
https://github.com/gobootcamp/book
https://github.com
https://github.com/gobootcamp/book
http://tour.golang.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2 CHAPTER 1. INTRO

This material is going to grow over time and is meant as a reference to
people learning Go. Feel free to use this book to help you organize your own
Go Bootcamp events or to learn Go. Don’t forget to mention upcoming events
in the mailing list below.

If you have any questions or want to know about future events, please con-
sider joining the Go Bootcamp Mailing List

1.1 Objectives
After the event, we expect that the attendees to leave with the following knowl-
edge, skills and attributes.

1.1.1 Knowledge
• pros/cons of static typing in Go

• what makes Go unique

• what is Go particularly good at

• what are the challenging parts of Go

1.1.2 Skills
• know how to do data modeling with Go

• know to or organize code in packages

• know how to test code

• know how to write documentation

http://groups.google.com/d/forum/golang-bootcamp

1.1. OBJECTIVES 3

• know how to use json marshaling

• know how to build a web API (depending on exercises)

• know to to test a web API (depending on exercises)

• know how to cross compile

• know the key go tools

1.1.3 Attitudes
• value the potential of the Go language

• can argue when to use Go vs using “legacy language”

• consider using Go for a future project

4 CHAPTER 1. INTRO

Chapter 2

The Basics
Go is often referred as a “simple” programming language, a language that can
be learned in a few hours if you already know another language. Go was de-
signed to feel familiar and to stay as simple as possible, the entire language
specification fits in just a few pages.

There are few concepts we are going to explore before writing our first
application.

2.1 Variables & inferred typing
The var statement declares a list of variables with the type declared last.

var (
name string
age int
location string

)

Or even

var (
name, location string
age int

)

5

http://golang.org/ref/spec
http://golang.org/ref/spec

6 CHAPTER 2. THE BASICS

Variables can also be declared one by one:

var name string
var age int
var location string

A var declaration can include initializers, one per variable.

var (
name string = "Prince Oberyn"
age int = 32
location string = "Dorne"

)

If an initializer is present, the type can be omitted, the variable will take the
type of the initializer (inferred typing).

var (
name = "Prince Oberyn"
age = 32
location = "Dorne"

)

You can also initialize variables on the same line:

var (
name, location, age = "Prince Oberyn", "Dorne", 32

)

Inside a function, the := short assignment statement can be used in place
of a var declaration with implicit type.

func main() {
name, location := "Prince Oberyn", "Dorne"
age := 32
fmt.Printf("%s (%d) of %s", name, age, location)

}

2.2. CONSTANTS 7

See in Playground
A variable can contain any type, including functions:

func main() {
action := func() {

//doing something
}
action()

}

See in Playground
Outside a function, every construct begins with a keyword (var, func, and

so on) and the := construct is not available.

• Go’s declaration Syntax

2.2 Constants
Constants are declared like variables, but with the const keyword. They can
be declared

Constants can only be character, string, boolean, or numeric values and
cannot be declared using the := syntax. An untyped constant takes the type
needed by its context.

const Pi = 3.14
const (

StatusOK = 200
StatusCreated = 201
StatusAccepted = 202
StatusNonAuthoritativeInfo = 203
StatusNoContent = 204
StatusResetContent = 205
StatusPartialContent = 206

)

http://play.golang.org/p/TenQy6FMQS
http://play.golang.org/p/S0Gq-tSESX
http://blog.golang.org/gos-declaration-syntax

8 CHAPTER 2. THE BASICS

package main

import "fmt"

const (
Pi = 3.14
Truth = false
Big = 1 << 100
Small = Big >> 99

)

func main() {
const Greeting = ""
fmt.Println(Greeting)
fmt.Println(Pi)
fmt.Println(Truth)

}

See in Playground

2.3 Printing Constants and Variables
While you can print the value of a variable or constant using the builtin print
and println functions, the more idiomatic and flexible way is to use the fmt
package

func main() {
cylonModel := 6
fmt.Println(cylonModel)

}

fmt.Println prints the pass variables values and appends a newline. fmt.Printf
is used when you want to print one or multiple values using a defined format
specifier.

func main() {
name := "Caprica-Six"
aka := fmt.Sprintf("Number %d", 6)
fmt.Printf("%s is also known as %s",

name, aka)
}

http://play.golang.org/p/fPlqsffS-J
http://golang.org/pkg/fmt/
http://golang.org/pkg/fmt/

2.4. PACKAGES AND IMPORTS 9

See in Playground
Read the fmt package documentation to see the available flags to create a

format specifier.

2.4 Packages and imports
Every Go program is made up of packages. Programs start running in package
main.

package main

func main() {
print("Hello, World!\n")

}

If you are writing an executable code (versus a library), then you need to
define a main package and a main() function which will be the entry point to
your software.

By convention, the package name is the same as the last element of the
import path. For instance, the “math/rand” package comprises files that begin
with the statement package rand.

Import statement examples:

import "fmt"
import "math/rand"

Or grouped:

import (
"fmt"
"math/rand"

)

• Go tour page

http://play.golang.org/p/sTZgAH7TWn
http://golang.org/pkg/fmt/#hdr-Printing
http://tour.golang.org/#4

10 CHAPTER 2. THE BASICS

• Go tour page 2

Usually, non standard lib packages are namespaced using a web url, for
instance I ported to Go some Rails logic, including the cryptography code used
in Rails 4. I hosted the source code containing a few packages on github, in the
following repository http://github.com/mattetti/goRailsYourself

To import the crypto package, I would need to use the following import
statement:

import "github.com/mattetti/goRailsYourself/crypto"

2.5 Code location
The snippet above basically tells the compiler to import the crypto package
available at the github.com/mattetti/goRailsYourself/crypto path.
It doesn’t mean that the compiler will automatically pull down the repository,
so where does it find the code?

You need to pull down the code yourself. The easiest way is to use the go
get command provided by Go.

$ go get github.com/mattetti/goRailsYourself/crypto

This command will pull down the code and put it in your Go path. When
installing Go, we set the GOPATH environment variable and that is what’s used
to store binaries and libraries. That’s also where you should store your code
(your workspace).

$ ls $GOPATH
bin pkg src

The bin folder will contain the Go compiled binaries, you probably added
the bin path to your system path.

http://tour.golang.org/#5
http://github.com/mattetti/goRailsYourself

2.6. EXPORTED NAMES 11

The pkg folder contains the compiled versions of the available libraries so
the compiler can link against them without recompiling them.

Finally the src folder contains all the Go source code organized by import
path:

$ ls $GOPATH/src
bitbucket.org code.google.com github.com launchpad.net

$ ls $GOPATH/src/github.com/mattetti
goblin goRailsYourself jet

When starting a new program or library, it is recommended to do so inside
the src folder, using a fully qualified path (for instance: github.com/<your
username>/<project name>)

2.6 Exported names
After importing a package, you can refer to the names it exports (meaning vari-
ables, methods and functions that are available from outside of the package).
In Go, a name is exported if it begins with a capital letter. Foo is an exported
name, as is FOO. The name foo is not exported.

See the difference between:

import (
"fmt"
"math"

)

func main() {
fmt.Println(math.pi)

}

and

12 CHAPTER 2. THE BASICS

func main() {
fmt.Println(math.Pi)

}

Pi is exported and can be accessed from outside the page, while pi isn’t
available.

cannot refer to unexported name math.pi

• See in Playground

Use the provided Go documentation or godoc.org to find exported names.

• Exported names example

2.7 Functions, signature, return values, named re-
sults

A function can take zero or more typed arguments. The type comes after the
variable name. Functions can be defined to return any number of values that
are always typed.

package main

import "fmt"

func add(x int, y int) int {
return x + y

}

func main() {
fmt.Println(add(42, 13))

}

• Function example

http://play.golang.org/p/Fsanbxo-A2
http://golang.org/pkg/
http://godoc.org/
http://play.golang.org/p/5y_evW6jiS
http://tour.golang.org/#7

2.7. FUNCTIONS, SIGNATURE, RETURN VALUES, NAMED RESULTS13

In the following example, instead of declaring the type of each parameter,
we only declare one type that applies to both.

package main

import "fmt"

func add(x, y int) int {
return x + y

}

func main() {
fmt.Println(add(42, 13))

}

• See in Playground

In the following example, the location function returns two string values.

func location(city string) (string, string) {
var region string
var country string

switch city {
case "Los Angeles", "LA", "Santa Monica":

region, country = "California", "North America"
case "New York", "NYC":

region, country = "New York", "North America"
default:

region, country = "Unknown", "Unknown"
}
return region, country

}

func main() {
region, country := location("Santa Monica")
fmt.Printf("Matt lives in %s, %s", region, country)

}

• See in playground

Functions take parameters. In Go, functions can return multiple “result pa-
rameters”, not just a single value. They can be named and act just like variables.

http://play.golang.org/p/AqCI22fz91
http://play.golang.org/p/8iduSCRNiO

14 CHAPTER 2. THE BASICS

If the result parameters are named, a return statement without arguments
returns the current values of the results.

func location(name, city string) (name, country string) {
switch city {
case "New York", "LA", "Chicago":

country = "North America"
default:

country = "Unknown"
}
return

}

func main() {
name, country := location("Matt", "LA")
fmt.Printf("%s lives in %s", name, country)

}

• See in Playground

I personally recommend against using named return parameters because
they often cause more confusion than they save time or help clarify your code.

2.8 Pointers
Go has pointers, but no pointer arithmetic. Struct fields can be accessed through
a struct pointer. The indirection through the pointer is transparent (you can
directly call fields and methods on a pointer).

Note that by default Go passes arguments by value (copying the arguments),
if you want to pass the arguments by reference, you need to pass pointers (or
use a structure using reference values like slices (Section 4.2) and maps (Sec-
tion 4.4).

To get the pointer of a value, use the & symbol in front of the value, to
dereference a pointer, use the * symbol.

Methods are often defined on pointers and not values (although they can
be defined on both), so you will often store a pointer in a variable as in the
example below:

http://play.golang.org/p/aOSABxXoiU

2.9. MUTABILITY 15

client := &http.Client{}
resp, err := client.Get("http://gobootcamp.com")

2.9 Mutability
In Go, only constants are immutable. However because arguments are passed
by value, a function receiving an value argument and mutating it, won’t mutate
the original value.

package main

import "fmt"

type Artist struct {
Name, Genre string
Songs int

}

func newRelease(a Artist) int {
a.Songs++
return a.Songs

}

func main() {
me := Artist{Name: "Matt", Genre: "Electro", Songs: 42}
fmt.Printf("%s released their %dth song\n", me.Name, newRelease(me))
fmt.Printf("%s has a total of %d songs", me.Name, me.Songs)

}

Matt released their 43th song
Matt has a total of 42 songs

See in Playground
As you can see the total amount of songs on the me variable’s value wasn’t

changed. To mutate the passed value, we need to pass it by reference, using a
pointer.

http://play.golang.org/p/_hcMO1tI8C

16 CHAPTER 2. THE BASICS

package main

import "fmt"

type Artist struct {
Name, Genre string
Songs int

}

func newRelease(a *Artist) int {
a.Songs++
return a.Songs

}

func main() {
me := &Artist{Name: "Matt", Genre: "Electro", Songs: 42}
fmt.Printf("%s released their %dth song\n", me.Name, newRelease(me))
fmt.Printf("%s has a total of %d songs", me.Name, me.Songs)

}

See in Playground
The only change between the two versions is that newRelease takes a

pointer to an Artist value and when I intialize our me variable, I used the &
symbol to get a pointer to the value.

Another place where you need to be careful is when calling methods on
values as explained a bit later (Section 6.3)

http://play.golang.org/p/FaWFYCZmfh

Chapter 3

Types

3.1 Basic types

bool
string

Numeric types:

uint either 32 or 64 bits
int same size as uint
uintptr an unsigned integer large enough to store the uninterpreted bits of

a pointer value
uint8 the set of all unsigned 8-bit integers (0 to 255)
uint16 the set of all unsigned 16-bit integers (0 to 65535)
uint32 the set of all unsigned 32-bit integers (0 to 4294967295)
uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615)

int8 the set of all signed 8-bit integers (-128 to 127)
int16 the set of all signed 16-bit integers (-32768 to 32767)
int32 the set of all signed 32-bit integers (-2147483648 to 2147483647)
int64 the set of all signed 64-bit integers

(-9223372036854775808 to 9223372036854775807)

float32 the set of all IEEE-754 32-bit floating-point numbers
float64 the set of all IEEE-754 64-bit floating-point numbers

complex64 the set of all complex numbers with float32 real and imaginary parts
complex128 the set of all complex numbers with float64 real and imaginary parts

byte alias for uint8
rune alias for int32 (represents a Unicode code point)

17

18 CHAPTER 3. TYPES

Example of some of the built-in types:

package main

import (
"fmt"
"math/cmplx"

)

var (
goIsFun bool = true
maxInt uint64 = 1<<64 - 1
complex complex128 = cmplx.Sqrt(-5 + 12i)

)

func main() {
const f = "%T(%v)\n"
fmt.Printf(f, goIsFun, goIsFun)
fmt.Printf(f, maxInt, maxInt)
fmt.Printf(f, complex, complex)

}

bool(true)
uint64(18446744073709551615)
complex128((2+3i))

• See in Playground

3.2 Type conversion
The expression T(v) converts the value v to the type T. Some numeric conver-
sions:

var i int = 42
var f float64 = float64(i)
var u uint = uint(f)

Or, put more simply:

http://play.golang.org/p/FFLi1IwIis

3.3. TYPE ASSERTION 19

i := 42
f := float64(i)
u := uint(f)

Go assignment between items of different type requires an explicit conver-
sion which means that you manually need to convert types if you are passing a
variable to a function expecting another type.

3.3 Type assertion
If you have a value and want to convert it to another or a specific type (in case
of interface{}), you can use type assertion. A type assertion takes a value
and tries to create another version in the specified explicit type.

In the example below, the timeMap function takes a value and if it can be
asserted as a map of interfaces{} keyed by strings, then it injects a new
entry called “updated_at” with the current time value.

package main

import (
"fmt"
"time"

)

func timeMap(y interface{}) {
z, ok := y.(map[string]interface{})
if ok {

z["updated_at"] = time.Now()
}

}

func main() {
foo := map[string]interface{}{

"Matt": 42,
}
timeMap(foo)
fmt.Println(foo)

}

See in playground

http://play.golang.org/p/jNrIZLQ4s8

20 CHAPTER 3. TYPES

The type assertion doesn’t have to be done on an empty interface. It’s often
used when you have a function taking a param of a specific interface but the
function inner code behaves differently based on the actual object type. Here
is an example:

package main

import "fmt"

type Stringer interface {
String() string

}

type fakeString struct {
content string

}

// function used to implement the Stringer interface
func (s *fakeString) String() string {

return s.content
}

func printString(value interface{}) {
switch str := value.(type) {
case string:

fmt.Println(str)
case Stringer:

fmt.Println(str.String())
}

}

func main() {
s := &fakeString{"Ceci n'est pas un string"}
printString(s)
printString("Hello, Gophers")

}

• See in Playground

Another example is when checking if an error is of a certain type:

if err != nil {
if msqlerr, ok := err.(*mysql.MySQLError); ok && msqlerr.Number == 1062 {
log.Println("We got a MySQL duplicate :(")

http://play.golang.org/p/69I8PAuoAV

3.4. STRUCTS 21

} else {
return err

}
}

• Read more in the Effective Go guide

3.4 Structs
A struct is a collection of fields/properties. You can define new types as structs
or interfaces (Section ??). If you are coming from an object-oriented back-
ground, you can think of a struct to be a light class that supports composition
but not inheritance. Methods (Section ??) and interfaces (Section ??) are dis-
cussed at length in Chapter ??

You don’t need to define getters and setters on struct fields, they can be
accessed automatically. However, note that only exported fields (capitalized)
can be accessed from outside of a package.

A struct literal sets a newly allocated struct value by listing the values of its
fields. You can list just a subset of fields by using the "Name:" syntax (the
order of named fields is irrelevant when using this syntax). The special prefix
& constructs a pointer to a newly allocated struct.

package main

import (
"fmt"
"time"

)

type Bootcamp struct {
// Latitude of the event
Lat float64
// Longitude of the event
Lon float64
// Date of the event
Date time.Time

}

func main() {

http://golang.org/doc/effective_go.html#interface_conversions

22 CHAPTER 3. TYPES

fmt.Println(Bootcamp{
Lat: 34.012836,
Lon: -118.495338,
Date: time.Now(),

})
}

• See in Playground

Declaration of struct literals:

package main

import "fmt"

type Point struct {
X, Y int

}

var (
p = Point{1, 2} // has type Point
q = &Point{1, 2} // has type *Point
r = Point{X: 1} // Y:0 is implicit
s = Point{} // X:0 and Y:0

)

func main() {
fmt.Println(p, q, r, s)

}

• See in playground

Accessing fields using the dot notation:

package main

import (
"fmt"
"time"

)

type Bootcamp struct {
Lat, Lon float64

http://play.golang.org/p/qQceF9kimQ
http://play.golang.org/p/DOlEpcRSBQ

3.5. INITIALIZING 23

Date time.Time
}

func main() {
event := Bootcamp{

Lat: 34.012836,
Lon: -118.495338,

}
event.Date = time.Now()
fmt.Printf("Event on %s, location (%f, %f)",

event.Date, event.Lat, event.Lon)

}

• See in Playground

3.5 Initializing
Go supports the new expression to allocate a zeroed value of the requested type
and to return a pointer to it.

x := new(int)

As seen in (Section 3.4) a common way to “initialize” a variable containing
struct or a reference to one, is to create a struct literal. Another option is to
create a constructor. This is usually done when the zero value isn’t good enough
and you need to set some default field values for instance.

Note that following expressions using new and an empty struct literal are
equivalent and result in the same kind of allocation/initialization:

package main

import (
"fmt"

)

type Bootcamp struct {
Lat float64
Lon float64

http://play.golang.org/p/QKwafh0TkQ

24 CHAPTER 3. TYPES

}

func main() {
x := new(Bootcamp)
y := &Bootcamp{}
fmt.Println(*x == *y)

}

• See in playground

Note that slices (Section 4.2), maps (Section 4.4) and channels (Section 8.2)
are usually allocated using make so the data structure these types are built upon
can be initialized.

Resources:

• Allocation with new - effective Go

• Composite Literals - effective Go

• Allocation with make - effective Go

3.6 Composition vs inheritance
Coming from an OOP background a lot of us are used to inheritance, something
that isn’t supported by Go. Instead you have to think in terms of composition
and interfaces.

The Go team wrote a short but good segment on this topic.
Composition (or embedding) is a well understood concept for most OOP

programmers and Go supports it, here is an example of the problem it’s ad-
dressing:

package main

import "fmt"

type User struct {
Id int

http://play.golang.org/p/XgECtFpCw6
http://golang.org/doc/effective_go.html#allocation_new
http://golang.org/doc/effective_go.html#composite_literals
http://golang.org/doc/effective_go.html#allocation_make
http://en.wikipedia.org/wiki/Object-oriented_programming
http://golang.org/doc/effective_go.html#embedding

3.6. COMPOSITION VS INHERITANCE 25

Name string
Location string

}

type Player struct {
Id int
Name, Location string
GameId int

}

func main() {
p := Player{}
p.Id = 42
p.Name = "Matt"
p.Location = "LA"
p.GameId = 90404
fmt.Printf("%+v", p)

}

• See in Playground

The above example demonstrates a classic OOP challenge, our Player
struct has the same fields as the User struct but it also has a GameId field.
Having to duplicate the field names isn’t a big deal, but it can be simplified by
composing our struct.

type User struct {
Id int
Name, Location string

}

type Player struct {
User
GameId int

}

We can initialize a new variable of type Player two different ways.
Using the dot notation to set the fields:

package main

import "fmt"

http://play.golang.org/p/kR-Cue8816

26 CHAPTER 3. TYPES

type User struct {
Id int
Name, Location string

}

type Player struct {
User
GameId int

}

func main() {
p := Player{}
p.Id = 42
p.Name = "Matt"
p.Location = "LA"
p.GameId = 90404
fmt.Printf("%+v", p)

}

• See in Playground

The other option is to use a struct literal:

package main

import "fmt"

type User struct {
Id int
Name, Location string

}

type Player struct {
User
GameId int

}

func main() {
p := Player{

User{Id: 42, Name: "Matt", Location: "LA"},
90404,

}
fmt.Printf(

"Id: %d, Name: %s, Location: %s, Game id: %d\n",
p.Id, p.Name, p.Location, p.GameId)

// Directly set a field define on the Player struct
p.Id = 11

http://play.golang.org/p/kR-Cue8816

3.6. COMPOSITION VS INHERITANCE 27

fmt.Printf("%+v", p)
}

• See in Playground

When using a struct litteral with an implicit composition, we can’t just pass
the composed fields. We instead need to pass the types composing the struct.
Once set, the fields are directly available.

Because our struct is composed of another struct, the methods on the User
struct is also available to the Player. Let’s define a method to show that
behavior:

package main

import "fmt"

type User struct {
Id int
Name, Location string

}

func (u *User) Greetings() string {
return fmt.Sprintf("Hi %s from %s",

u.Name, u.Location)
}

type Player struct {
User
GameId int

}

func main() {
p := Player{}
p.Id = 42
p.Name = "Matt"
p.Location = "LA"
fmt.Println(p.Greetings())

}

• See in Playground

As you can see this is a very powerful way to build data structures but it’s
even more interesting when thinking about it in the context of interfaces. By

http://play.golang.org/p/wscd8inj9t
http://play.golang.org/p/q_KFeTLwVX

28 CHAPTER 3. TYPES

composing one of your structure with one implementing a given interface, your
structure automatically implements the interface.

Here is another example, this time we will look at implementing a Job
struct that can also behave as a logger.

Here is the explicit way:

package main

import (
"log"
"os"

)

type Job struct {
Command string
Logger *log.Logger

}

func main() {
job := &Job{"demo", log.New(os.Stderr, "Job: ", log.Ldate)}
// same as
// job := &Job{Command: "demo",
// Logger: log.New(os.Stderr, "Job: ", log.Ldate)}
job.Logger.Print("test")

}

• See in playground

Our Job struct has a field called Logger which is a pointer to another type
(log.Logger)

When we initialize our value, we set the logger so we can then call its
Print function by chaining the calls: job.Logger.Print()

But Go lets you go even further and use implicit composition. We can skip
defining the field for our logger and now all the methods available on a pointer
to log.Logger are available from our struct:

package main

import (
"log"
"os"

http://golang.org/pkg/log/#Logger
http://play.golang.org/p/3yYJadlmHS
http://golang.org/pkg/log/#Logger

3.7. EXERCISE 29

)

type Job struct {
Command string
*log.Logger

}

func main() {
job := &Job{"demo", log.New(os.Stderr, "Job: ", log.Ldate)}
job.Print("starting now...")

}

• See in Playground

Note that you still need to set the logger and that’s often a good reason to
use a constructor (custom constructor are used when you need to set a struc-
ture before using a value, see (Section 11.4)). What is really nice with the
implicit composition is that it allows to easily and cheaply make your structs
implement interfaces. Imagine that you have a function that takes variables
implementing an interface with the Print method. My adding *log.Logger
to your struct (and initializing it properly), your struct is now implementing the
interface without you writing any custom methods.

3.7 Exercise
Looking at the User / Player example, you might have noticed that we com-
posed Player using User but it might be better to compose it with a pointer
to a User struct. The reason why a pointer might be better is because in Go,
arguments are passed by value and not reference. If you have a small struct
that is inexpensive to copy, that is fine, but more than likely, in real life, our
User struct will be bigger and should not be copied. Instead we would want to
pass by reference (using a pointer). (Section 2.9 & Section 6.3 discuss more in
depth how calling a method on a type value vs a pointer affects mutability and
memory allocation)

Modify the code to use a pointer but still be able to initialize without using
the dot notation.

http://play.golang.org/p/mq3r9H9szz

30 CHAPTER 3. TYPES

package main

import "fmt"

type User struct {
Id int
Name, Location string

}

func (u *User) Greetings() string {
return fmt.Sprintf("Hi %s from %s",

u.Name, u.Location)
}

type Player struct {
*User
GameId int

}

func main() {
// insert code

}

• See in Playground

Question: We defined the Greetings method on a pointer to a User type.
How come we were able to call it directly on the value?

3.7.1 Solution

package main

import "fmt"

type User struct {
Id int
Name, Location string

}

func (u *User) Greetings() string {
return fmt.Sprintf("Hi %s from %s",

u.Name, u.Location)
}

type Player struct {

http://play.golang.org/p/Ia3-RiZ_ac

3.7. EXERCISE 31

*User
GameId int

}

func NewPlayer(id int, name, location string, gameId int) *Player {
return &Player{

User: &User{id, name, location},
GameId: gameId,

}
}

func main() {
p := NewPlayer(42, "Matt", "LA", 90404)
fmt.Println(p.Greetings())

}

• See in Playground

Answer: That is because methods defined on a pointer are also automati-
cally available on the value itself. The example didn’t use a pointer on purpose,
so the dot notation was working right away. In the pointer solution, an zero
value player is composed of a nil pointer of type User and therefore, we can’t
call a field on a nil pointer.

http://play.golang.org/p/tpNVNC8hnX

32 CHAPTER 3. TYPES

Chapter 4

Collection Types

4.1 Arrays
The type [n]T is an array of n values of type T.

The expression:

var a [10]int

declares a variable a as an array of ten integers.
An array’s length is part of its type, so arrays cannot be resized. This seems

limiting, but don’t worry; Go provides a convenient way of working with ar-
rays.

package main

import "fmt"

func main() {
var a [2]string
a[0] = "Hello"
a[1] = "World"
fmt.Println(a[0], a[1])
fmt.Println(a)

}

Golang tour page

33

http://tour.golang.org/#31

34 CHAPTER 4. COLLECTION TYPES

You can also set the array entries as you declare the array:

package main

import "fmt"

func main() {
a := [2]string{"hello", "world!"}
fmt.Printf("%q", a)

}

• See in Playground

Finally, you can use an ellipsis to use an implicit length when you pass the
values:

package main

import "fmt"

func main() {
a := [...]string{"hello", "world!"}
fmt.Printf("%q", a)

}

• See in Playground

4.1.1 Printing arrays
Note how we used the fmt package using Printf and used the %q “verb” to
print each element quoted.

If we had used Println or the %s verb, we would have add a different
result:

package main

import "fmt"

http://play.golang.org/p/87fdeul4H7
http://play.golang.org/p/lxVUhtyJJP
http://golang.org/pkg/fmt/

4.1. ARRAYS 35

func main() {
a := [2]string{"hello", "world!"}
fmt.Println(a)
// [hello world!]
fmt.Printf("%s\n", a)
// [hello world!]
fmt.Printf("%q\n", a)
// ["hello" "world!"]

}

• See in Playground

4.1.2 Multi-dimensional arrays
You can also create multi-dimensional arrays:

package main

import "fmt"

func main() {
var a [2][3]string
for i := 0; i < 2; i++ {

for j := 0; j < 3; j++ {
a[i][j] = fmt.Sprintf("row %d - column %d", i+1, j+1)

}
}
fmt.Printf("%q", a)
// [["row 1 - column 1" "row 1 - column 2" "row 1 - column 3"]
// ["row 2 - column 1" "row 2 - column 2" "row 2 - column 3"]]

}

• See in Playground

Trying to access or set a value at an index that doesn’t exist will prevent
your program from compiling, for instance, try to compile the following code:

package main

func main() {
var a [2]string
a[3] = "Hello"

}

http://play.golang.org/p/jsvGaXW6uH
http://play.golang.org/p/L6faG4RMPx

36 CHAPTER 4. COLLECTION TYPES

You will see that the compiler will report the following error:

Invalid array index 3 (out of bounds for 2-element array)

That’s because our array is of length 2 meaning that the only 2 available
indexes are 0 and 1. Trying to access index 3 results in an error that tells us that
we are trying to access an index that is of bounds since our array only contains
2 elements and we are trying to access the 4th element of the array.

Slices, the type that we are going to see next is more often used, due to the
fact that we don’t always know in advance the length of the array we need.

4.2 Slices
Slices wrap arrays to give a more general, powerful, and convenient interface
to sequences of data. Except for items with explicit dimension such as trans-
formation matrices, most array programming in Go is done with slices rather
than simple arrays.

Slices hold references to an underlying array, and if you assign one slice
to another, both refer to the same array. If a function takes a slice argument,
changes it makes to the elements of the slice will be visible to the caller, anal-
ogous to passing a pointer to the underlying array.

A slice points to an array of values and also includes a length. Slices can
be resized since they are just a wrapper on top of another data structure.

[]T is a slice with elements of type T.

package main

import "fmt"

func main() {
p := []int{2, 3, 5, 7, 11, 13}
fmt.Println(p)
// [2 3 5 7 11 13]

}

• Go tour page

http://tour.golang.org/#33

4.2. SLICES 37

4.2.1 Slicing a slice
Slices can be re-sliced, creating a new slice value that points to the same array.

The expression

s[lo:hi]

evaluates to a slice of the elements from lo through hi-1, inclusive. Thus

s[lo:lo]

is empty and

s[lo:lo+1]

has one element.
Note: lo and hi would be integers representing indexes.

package main

import "fmt"

func main() {
mySlice := []int{2, 3, 5, 7, 11, 13}
fmt.Println(mySlice)
// [2 3 5 7 11 13]

fmt.Println(mySlice[1:4])
// [3 5 7]

// missing low index implies 0
fmt.Println(mySlice[:3])
// [2 3 5]

// missing high index implies len(s)
fmt.Println(mySlice[4:])
// [11 13]

}

• See in Playground

• Go tour page

http://play.golang.org/p/2z_6hNt_Vg
http://tour.golang.org/#33

38 CHAPTER 4. COLLECTION TYPES

4.2.2 Making slices
Besides creating slices by passing the values right away (slice literal), you can
also use make. You create an empty slice of a specific length and then populate
each entry:

package main

import "fmt"

func main() {
cities := make([]string, 3)
cities[0] = "Santa Monica"
cities[1] = "Venice"
cities[2] = "Los Angeles"
fmt.Printf("%q", cities)
// ["Santa Monica" "Venice" "Los Angeles"]

}

• See in Playground

It works by allocating a zeroed array and returning a slice that refers to that
array.

• Go tour

4.2.3 Appending to a slice
Note however, that you would get a runtime error if you were to do that:

cities := []string{}
cities[0] = "Santa Monica"

As explained above, a slice is seating on top of an array, in this case, the
array is empty and the slice can’t set a value in the referred array. There is a
way to do that though, and that is by using the append function:

http://play.golang.org/p/CX5z79KYsK
http://tour.golang.org/#34

4.2. SLICES 39

package main

import "fmt"

func main() {
cities := []string{}
cities = append(cities, "San Diego")
fmt.Println(cities)
// [San Diego]

}

• See in Playground

You can append more than one entry to a slice:

package main

import "fmt"

func main() {
cities := []string{}
cities = append(cities, "San Diego", "Mountain View")
fmt.Printf("%q", cities)
// ["San Diego" "Mountain View"]

}

• See in Playground

And you can also append a slice to another using an ellipsis:

package main

import "fmt"

func main() {
cities := []string{"San Diego", "Mountain View"}
otherCities := []string{"Santa Monica", "Venice"}
cities = append(cities, otherCities...)
fmt.Printf("%q", cities)
// ["San Diego" "Mountain View" "Santa Monica" "Venice"]

}

http://play.golang.org/p/rNRt6jvlFl
http://play.golang.org/p/fdh3daTttz

40 CHAPTER 4. COLLECTION TYPES

• See in Playground

Note that the ellipsis is a built-in feature of the language that means that
the element is a collection. We can’t append an element of type slice of strings
([]string) to a slice of strings, only strings can be appended. However, using
the ellipsis (...) after our slice, we indicate that we want to append each
element of our slice. Because we are appending strings from another slice, the
compiler will accept the operation since the types are matching.

You obviously can’t append a slice of type []int to another slice of type
[]string.

4.2.4 Length
At any time, you can check the length of a slice by using len:

package main

import "fmt"

func main() {
cities := []string{

"Santa Monica",
"San Diego",
"San Francisco",

}
fmt.Println(len(cities))
// 3
countries := make([]string, 42)
fmt.Println(len(countries))
// 42

}

• See in Playground

4.2.5 Nil slices
The zero value of a slice is nil. A nil slice has a length and capacity of 0.

http://play.golang.org/p/CjR88q7CIo
http://play.golang.org/p/EvvVrOpPII

4.3. RANGE 41

package main

import "fmt"

func main() {
var z []int
fmt.Println(z, len(z), cap(z))
// [] 0 0
if z == nil {

fmt.Println("nil!")
}
// nil!

}

* See in Playground * Go tour page

4.2.6 Resources
For more details about slices:

• Go slices, usage and internals

• Effective Go - slices

• Append function documentation

• Slice tricks

• Effective Go - slices

• Effective Go - two-dimensional slices

• Go by example - slices

4.3 Range
The range form of the for loop iterates over a slice (Section 4.2) or a map
(Section 4.4). Being able to iterate over all the elements of a data structure is
very useful and range simplifies the iteration.

http://play.golang.org/p/inw1CunExE
http://tour.golang.org/#35
http://golang.org/doc/articles/slices_usage_and_internals.html
http://golang.org/doc/effective_go.html#slices
http://golang.org/pkg/builtin/#append
https://code.google.com/p/go-wiki/wiki/SliceTricks
http://golang.org/doc/effective_go.html#slices
http://golang.org/doc/effective_go.html#two_dimensional_slices
https://gobyexample.com/slices

42 CHAPTER 4. COLLECTION TYPES

package main

import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}

func main() {
for i, v := range pow {

fmt.Printf("2**%d = %d\n", i, v)
}

}

Which will print:

2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128

• Go tour page

You can skip the index or value by assigning to _. If you only want the
index, drop the “, value” entirely.

package main

import "fmt"

func main() {
pow := make([]int, 10)
for i := range pow {

pow[i] = 1 << uint(i)
}
for _, value := range pow {

fmt.Printf("%d\n", value)
}

}

• Go tour page

http://tour.golang.org/#36
http://tour.golang.org/#37

4.3. RANGE 43

4.3.1 Break & continue
As if you were using a normal for loop, you can stop the iteration anytime by
using break:

package main

import "fmt"

func main() {
pow := make([]int, 10)
for i := range pow {

pow[i] = 1 << uint(i)
if pow[i] > 16 {

break
}

}
fmt.Println(pow)
// [1 2 4 8 16 0 0 0 0 0]

}

• See in Playground

You can also skip an iteration by using continue:

package main

import "fmt"

func main() {
pow := make([]int, 10)
for i := range pow {

if i%2 == 0 {
continue

}
pow[i] = 1 << uint(i)

}
fmt.Println(pow)
// [0 2 0 8 0 32 0 128 0 512]

}

• See in Playground

http://play.golang.org/p/T65dcE8fZ7
http://play.golang.org/p/TT1vfYKpOy

44 CHAPTER 4. COLLECTION TYPES

4.3.2 Range and maps
Range can also be used on maps (Section 4.4), in that case, the first parameter
isn’t an incremental integer but the map key:

package main

import "fmt"

func main() {
cities := map[string]int{

"New York": 8336697,
"Los Angeles": 3857799,
"Chicago": 2714856,

}
for key, value := range cities {

fmt.Printf("%s has %d inhabitants\n", key, value)
}

}

Which will output:

New York has 8336697 inhabitants
Los Angeles has 3857799 inhabitants
Chicago has 2714856 inhabitants

• See in Playground

4.3.3 Exercise
Given a list of names, you need to organize each name within a slice based on
its length.

package main

var names = []string{"Katrina", "Evan", "Neil", "Adam", "Martin", "Matt",
"Emma", "Isabella", "Emily", "Madison",
"Ava", "Olivia", "Sophia", "Abigail",
"Elizabeth", "Chloe", "Samantha",
"Addison", "Natalie", "Mia", "Alexis"}

http://play.golang.org/p/rg5sc_Nl-P

4.3. RANGE 45

func main() {
// insert your code here

}

• See in Playground

After you implement your solution, you should get the following output
(slice of slice of strings):

[[] [] [Ava Mia] [Evan Neil Adam Matt Emma] [Emily Chloe]
[Martin Olivia Sophia Alexis] [Katrina Madison Abigail Addison Natalie]
[Isabella Samantha] [Elizabeth]]

4.3.4 Solution

package main

import "fmt"

var names = []string{"Katrina", "Evan", "Neil", "Adam", "Martin", "Matt",
"Emma", "Isabella", "Emily", "Madison",
"Ava", "Olivia", "Sophia", "Abigail",
"Elizabeth", "Chloe", "Samantha",
"Addison", "Natalie", "Mia", "Alexis"}

func main() {
var maxLen int
for _, name := range names {

if l := len(name); l > maxLen {
maxLen = l

}
}
output := make([][]string, maxLen)
for _, name := range names {

output[len(name)-1] = append(output[len(name)-1], name)
}

fmt.Printf("%v", output)
}

• See in Playground

http://play.golang.org/p/o1YicfGXCx
http://play.golang.org/p/gMOouTnYvC

46 CHAPTER 4. COLLECTION TYPES

There are a few interesting things to note. To avoid an out of bounds insert,
we need our output slice to be big enough. But we don’t want it to be too
big. That’s why we need to do a first pass through all the names and find the
longest. We use the longest name length to set the length of the output slice
length. Slices are zero indexed, so when inserting the names, we need to get
the length of the name minus one.

4.4 Maps
Maps are somewhat similar to what other languages call “dictionaries” or “hashes”.

A map maps keys to values. Here we are mapping string keys (actor names)
to an integer value (age).

package main

import "fmt"

func main() {
celebs := map[string]int{

"Nicolas Cage": 50,
"Selena Gomez": 21,
"Jude Law": 41,
"Scarlett Johansson": 29,

}

fmt.Printf("%#v", celebs)
}

map[string]int{"Nicolas Cage":50, "Selena Gomez":21, "Jude Law":41,
"Scarlett Johansson":29}

• See in Playground

When not using map literals like above, maps must be created with make
(not new) before use. The nil map is empty and cannot be assigned to.

Assignments follow the Go convention and can be observed in the example
below.

http://play.golang.org/p/ttJ-3xgzuk

4.4. MAPS 47

package main

import "fmt"

type Vertex struct {
Lat, Long float64

}

var m map[string]Vertex

func main() {
m = make(map[string]Vertex)
m["Bell Labs"] = Vertex{40.68433, -74.39967}
fmt.Println(m["Bell Labs"])

}

• See in Playground

When using map literals, if the top-level type is just a type name, you can
omit it from the elements of the literal.

package main

import "fmt"

type Vertex struct {
Lat, Long float64

}

var m = map[string]Vertex{
"Bell Labs": {40.68433, -74.39967},
// same as "Bell Labs": Vertex{40.68433, -74.39967}
"Google": {37.42202, -122.08408},

}

func main() {
fmt.Println(m)

}

• See in Playground

4.4.1 Mutating maps
Insert or update an element in map m:

http://play.golang.org/p/NW1ODtLARA
http://play.golang.org/p/nvGq-9gQ5z

48 CHAPTER 4. COLLECTION TYPES

m[key] = elem

Retrieve an element:

elem = m[key]

Delete an element:

delete(m, key)

Test that a key is present with a two-value assignment:

elem, ok = m[key]

• See in Playground

If key is in m, ok is true. If not, ok is false and elem is the zero value for
the map’s element type. Similarly, when reading from a map if the key is not
present the result is the zero value for the map’s element type.

4.4.2 Resources
• Go team blog post on maps

• Effective Go - maps

4.4.3 Exercise
Implement WordCount.

http://play.golang.org/p/pvfk9maSsh
http://blog.golang.org/go-maps-in-action
http://golang.org/doc/effective_go.html#maps

4.4. MAPS 49

package main

import (
"code.google.com/p/go-tour/wc"

)

func WordCount(s string) map[string]int {
return map[string]int{"x": 1}

}

func main() {
wc.Test(WordCount)

}

• See in Playground

• Online assignment

It should return a map of the counts of each “word” in the string s. The
wc.Test function runs a test suite against the provided function and prints
success or failure.

You might find strings.Fields helpful.

4.4.4 Solution

package main

import (
"code.google.com/p/go-tour/wc"
"strings"

)

func WordCount(s string) map[string]int {
words := strings.Fields(s)
count := map[string]int{}
for _, word := range words {

count[word]++
}
return count

}

func main() {
wc.Test(WordCount)

}

http://play.golang.org/p/-7aN1ASYYx
http://tour.golang.org/#43
http://golang.org/pkg/strings/#Fields

50 CHAPTER 4. COLLECTION TYPES

• See in Playground

http://play.golang.org/p/M0bb5rWa7t

Chapter 5

Control flow

5.1 If statement
The if statement looks as it does in C or Java, except that the () are gone
and the { } are required. Like for, the if statement can start with a short
statement to execute before the condition. Variables declared by the statement
are only in scope until the end of the if. Variables declared inside an if short
statement are also available inside any of the else blocks.

• If statement example

if answer != 42 {
return "Wrong answer"

}

• If with a short statement

if err := foo(); err != nil {
panic(err)

}

• If and else example

51

http://tour.golang.org/#22
http://tour.golang.org/#23
http://tour.golang.org/#24

52 CHAPTER 5. CONTROL FLOW

5.2 For Loop
Go has only one looping construct, the for loop. The basic for loop looks as it
does in C or Java, except that the () are gone (they are not even optional) and
the { } are required. As in C or Java, you can leave the pre and post statements
empty.

• For loop example

sum := 0
for i := 0; i < 10; i++ {

sum += i
}

• For loop without pre/post statements

sum := 1
for ; sum < 1000; {

sum += sum
}

• For loop as a while loop

sum := 1
for sum < 1000 {

sum += sum
}

• Infinite loop

for {
// do something in a loop forever

}

http://tour.golang.org/#18
http://tour.golang.org/#19
http://tour.golang.org/#20
http://tour.golang.org/#21

5.3. SWITCH CASE STATEMENT 53

5.3 Switch case statement
Most programming languages have some sort switch case statement to allow
developers to avoid doing complex and ugly series of if else statements.

package main

import (
"fmt"
"time"

)

func main() {
now := time.Now().Unix()
mins := now % 2
switch mins {
case 0:

fmt.Println("even")
case 1:

fmt.Println("odd")
}

}

• See in Playground

There a few interesting things to know about this statement in Go: * You
can only compare value of the same type. * You can set an optional default
statement to be exectuted if all the others fail. * You can use an expression in
the case statement, for instance you can calculate a value to use in the case:

package main

import "fmt"

func main() {
num := 3
v := num % 2
switch v {
case 0:

fmt.Println("even")
case 3 - 2:

fmt.Println("odd")
}

}

http://play.golang.org/p/1_T5_w8yJm

54 CHAPTER 5. CONTROL FLOW

• See in Playground

• You can have multiple values in a case statement:

package main

import "fmt"

func main() {
score := 7
switch score {
case 0, 1, 3:

fmt.Println("Terrible")
case 4, 5:

fmt.Println("Mediocre")
case 6, 7:

fmt.Println("Not bad")
case 8, 9:

fmt.Println("Almost perfect")
case 10:

fmt.Println("hmm did you cheat?")
default:

fmt.Println(score, " off the chart")
}

}

• See in Playground

• You can execute all the following statements after a match using the
fallthrough statement:

package main

import "fmt"

func main() {
n := 4
switch n {
case 0:

fmt.Println("is zero")
fallthrough

case 1:
fmt.Println("is <= 1")
fallthrough

case 2:

http://play.golang.org/p/Gu1Ey1M8uI
http://play.golang.org/p/KHjUOUtWgv

5.3. SWITCH CASE STATEMENT 55

fmt.Println("is <= 2")
fallthrough

case 3:
fmt.Println("is <= 3")
fallthrough

case 4:
fmt.Println("is <= 4")
fallthrough

case 5:
fmt.Println("is <= 5")
fallthrough

case 6:
fmt.Println("is <= 6")
fallthrough

case 7:
fmt.Println("is <= 7")
fallthrough

case 8:
fmt.Println("is <= 8")
fallthrough

default:
fmt.Println("Try again!")

}
}

is <= 4
is <= 5
is <= 6
is <= 7
is <= 8
Try again!

• See in Playground

You can use a break statement inside your matched statement to exit the
switch processing:

package main

import (
"fmt"
"time"

)

http://play.golang.org/p/Se9GbB1QCr

56 CHAPTER 5. CONTROL FLOW

func main() {
n := 1
switch n {
case 0:

fmt.Println("is zero")
fallthrough

case 1:
fmt.Println("<= 1")
fallthrough

case 2:
fmt.Println("<= 2")
fallthrough

case 3:
fmt.Println("<= 3")
if time.Now().Unix()%2 == 0 {

fmt.Println("un pasito pa lante maria")
break

}
fallthrough

case 4:
fmt.Println("<= 4")
fallthrough

case 5:
fmt.Println("<= 5")

}
}

• See in Playground

<= 1
<= 2
<= 3
un pasito pa lante maria

5.4 Exercise

You have 50 bitcoins to distribute to 10 users: Matthew, Sarah, Augustus,
Heidi, Emilie, Peter, Giana, Adriano, Aaron, Elizabeth The coins will be dis-
tributed based on the vowels contained in each name where:

a: 1 coin e: 1 coin i: 2 coins o: 3 coins u: 4 coins

http://play.golang.org/p/rFalZllNn1

5.5. SOLUTION 57

and a user can’t get more than 10 coins. Print a map with each user’s name
and the amount of coins distributed. After distributing all the coins, you should
have 2 coins left.

The output should look something like that:

map[Matthew:2 Peter:2 Giana:4 Adriano:7 Elizabeth:5 Sarah:2 Augustus:10 Heidi:5 Emilie:6 Aaron:5]
Coins left: 2

Note that Go doesn’t keep the order of the keys in a map, so your results
might not look exactly the same but the key/value mapping should be the same.

Here is some starting code:

package main

import "fmt"

var (
coins = 50
users = []string{

"Matthew", "Sarah", "Augustus", "Heidi", "Emilie",
"Peter", "Giana", "Adriano", "Aaron", "Elizabeth",

}
distribution = make(map[string]int, len(users))

)

func main() {
fmt.Println(distribution)
fmt.Println("Coins left:", coins)

}

• See in Playground

5.5 Solution

package main

import "fmt"

var (

http://play.golang.org/p/jaKZWoCHbD

58 CHAPTER 5. CONTROL FLOW

coins = 50
users = []string{

"Matthew", "Sarah", "Augustus", "Heidi", "Emilie",
"Peter", "Giana", "Adriano", "Aaron", "Elizabeth",

}
distribution = make(map[string]int, len(users))

)

func main() {
coinsForUser := func(name string) int {

var total int
for i := 0; i < len(name); i++ {

switch string(name[i]) {
case "a", "A":

total++
case "e", "E":

total++
case "i", "I":

total = total + 2
case "o", "O":

total = total + 3
case "u", "U":

total = total + 4
}

}
return total

}

for _, name := range users {
v := coinsForUser(name)
if v > 10 {

v = 10
}
distribution[name] = v
coins = coins - v

}
fmt.Println(distribution)
fmt.Println("Coins left:", coins)

}

• See in Playground

http://play.golang.org/p/D0HfGeICyj

Chapter 6

Methods
While technically Go isn’t an Object Oriented Programming language, types
and methods allow for an object-oriented style of programming. The big dif-
ference is that Go does not support type inheritance but instead has a concept
of interface.

In this chapter, we will focus on Go’s use of methods and interfaces.
Note: A frequently asked question is “what is the difference between a

function and a method”. A method is a function that has a defined receiver, in
OOP terms, a method is a function on an instance of an object.

Go does not have classes. However, you can define methods on struct types.
The method receiver appears in its own argument list between the func

keyword and the method name. Here is an example with a User struct contain-
ing two fields: FirstName and LastName of string type.

package main

import (
"fmt"

)

type User struct {
FirstName, LastName string

}

func (u User) Greeting() string {
return fmt.Sprintf("Dear %s %s", u.FirstName, u.LastName)

}

59

http://en.wikipedia.org/wiki/Object-oriented_programming

60 CHAPTER 6. METHODS

func main() {
u := User{"Matt", "Aimonetti"}
fmt.Println(u.Greeting())

}

See in playground
Note how methods are defined outside of the struct, if you have been writing

Object Oriented code for a while, you might find that a bit odd at first. The
method on the User type could de defined anywhere in the package.

Go tour page

6.1 Code organization
Methods can be defined on any file in the package, but my recommendation is
to organize the code as shown below:

package models

// list of packages to import
import (

"fmt"
)

// list of constants
const (

ConstExample = "const before vars"
)

// list of variables
var (

ExportedVar = 42
nonExportedVar = "so say we all"

)

// Main type(s) for the file,
// try to keep the lowest amount of structs per file when possible.
type User struct {

FirstName, LastName string
Location *UserLocation

}

type UserLocation struct {

http://play.golang.org/p/ITVfJkCiwk
http://tour.golang.org/#52

6.2. TYPE ALIASING 61

City string
Country string

}

// List of functions
func NewUser(firstName, lastName string) *User {

return &User{FirstName: firstName,
LastName: lastName,
Location: &UserLocation{

City: "Santa Monica",
Country: "USA",

},
}

}

// List of methods
func (u *User) Greeting() string {

return fmt.Sprintf("Dear %s %s", u.FirstName, u.LastName)
}

In fact, you can define a method on any type you define in your package,
not just structs. You cannot define a method on a type from another package,
or on a basic type.

6.2 Type aliasing
To define methods on a type you don’t “own”, you need to define an alias for
the type you want to extend:

package main

import (
"fmt"
"strings"

)

type MyStr string

func (s MyStr) Uppercase() string {
return strings.ToUpper(string(s))

}

func main() {

62 CHAPTER 6. METHODS

fmt.Println(MyStr("test").Uppercase())
}

Playground Example

package main

import (
"fmt"
"math"

)

type MyFloat float64

func (f MyFloat) Abs() float64 {
if f < 0 {

return float64(-f)
}
return float64(f)

}

func main() {
f := MyFloat(-math.Sqrt2)
fmt.Println(f.Abs())

}

Playground Example

6.3 Method receivers
Methods can be associated with a named type (User for instance) or a pointer
to a named type (*User). In the two type aliasing examples above, methods
were defined on the value types (MyStr and MyFloat).

There are two reasons to use a pointer receiver. First, to avoid copying the
value on each method call (more efficient if the value type is a large struct).
The above example would have been better written as follows:

package main

import (

http://play.golang.org/p/PIa4nYfDMm
http://tour.golang.org/#53

6.3. METHOD RECEIVERS 63

"fmt"
)

type User struct {
FirstName, LastName string

}

func (u *User) Greeting() string {
return fmt.Sprintf("Dear %s %s", u.FirstName, u.LastName)

}

func main() {
u := &User{"Matt", "Aimonetti"}
fmt.Println(u.Greeting())

}

See in playground
Remember that Go passes everything by value, meaning that when Greeting()

is defined on the value type, every time you call Greeting(), you are copy-
ing the User struct. Instead when using a pointer, only the pointer is copied
(cheap).

The other reason why you might want to use a pointer is so that the method
can modify the value that its receiver points to.

package main

import (
"fmt"
"math"

)

type Vertex struct {
X, Y float64

}

func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f

}

func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)

}

func main() {

http://play.golang.org/p/tEVN-vhyAi

64 CHAPTER 6. METHODS

v := &Vertex{3, 4}
v.Scale(5)
fmt.Println(v, v.Abs())

}

See in playground
In the example above, Abs() could be defined on the value type or the

pointer since the method doesn’t modify the receiver value (the vertex). How-
ever Scale() has to be defined on a pointer since it does modify the receiver.
Scale() resets the values of the X and Y fields.

Go tour page

http://play.golang.org/p/F-PI1fj5AZ
http://tour.golang.org/#54

Chapter 7

Interfaces
An interface type is defined by a set of methods. A value of interface type can
hold any value that implements those methods.

Here is a refactored version of our earlier example. This time we made
the greeting feature more generic by defining a function called Greet which
takes a param of interface type Namer. Namer is a new interface we defined
which only defines one method: Name(). So Greet() will accept as param
any value which has a Name() method defined.

To make our User struct implement the interface, we defined a Name()
method. We can now call Greet and pass our pointer to User type.

package main

import (
"fmt"

)

type User struct {
FirstName, LastName string

}

func (u *User) Name() string {
return fmt.Sprintf("%s %s", u.FirstName, u.LastName)

}

type Namer interface {
Name() string

}

65

66 CHAPTER 7. INTERFACES

func Greet(n Namer) string {
return fmt.Sprintf("Dear %s", n.Name())

}

func main() {
u := &User{"Matt", "Aimonetti"}
fmt.Println(Greet(u))

}

See in playground
We could now define a new type that would implement the same interface

and our Greet function would still work.

package main

import (
"fmt"

)

type User struct {
FirstName, LastName string

}

func (u *User) Name() string {
return fmt.Sprintf("%s %s", u.FirstName, u.LastName)

}

type Customer struct {
Id int
FullName string

}

func (c *Customer) Name() string {
return c.FullName

}

type Namer interface {
Name() string

}

func Greet(n Namer) string {
return fmt.Sprintf("Dear %s", n.Name())

}

func main() {
u := &User{"Matt", "Aimonetti"}
fmt.Println(Greet(u))
c := &Customer{42, "Francesc"}

http://play.golang.org/p/aXNaPqMbpV

7.1. INTERFACES ARE SATISFIED IMPLICITLY 67

fmt.Println(Greet(c))
}

See in playground

7.1 Interfaces are satisfied implicitly
A type implements an interface by implementing the methods.

There is no explicit declaration of intent.
Implicit interfaces decouple implementation packages from the packages

that define the interfaces: neither depends on the other.
It also encourages the definition of precise interfaces, because you don’t

have to find every implementation and tag it with the new interface name.

package main

import (
"fmt"
"os"

)

type Reader interface {
Read(b []byte) (n int, err error)

}

type Writer interface {
Write(b []byte) (n int, err error)

}

type ReadWriter interface {
Reader
Writer

}

func main() {
var w Writer

// os.Stdout implements Writer
w = os.Stdout

fmt.Fprintf(w, "hello, writer\n")
}

http://play.golang.org/p/16TYeeXHp5

68 CHAPTER 7. INTERFACES

See in playground
Package io defines Reader and Writer so you don’t have to.

7.2 Errors
An error is anything that can describe itself as an error string. The idea is
captured by the predefined, built-in interface type, error, with its single method,
Error, returning a string:

type error interface {
Error() string

}

The fmt package’s various print routines automatically know to call the
method when asked to print an error.

package main

import (
"fmt"
"time"

)

type MyError struct {
When time.Time
What string

}

func (e *MyError) Error() string {
return fmt.Sprintf("at %v, %s",

e.When, e.What)
}

func run() error {
return &MyError{

time.Now(),
"it didn't work",

}
}

func main() {
if err := run(); err != nil {

http://play.golang.org/p/vEmswt3Urz
http://golang.org/pkg/io/

7.3. EXERCISE: ERRORS 69

fmt.Println(err)
}

}

See in Playground

7.3 Exercise: Errors
Online assignment

Copy your Sqrt function from the earlier exercises (Section 5.4) and mod-
ify it to return an error value.

Sqrt should return a non-nil error value when given a negative number, as
it doesn’t support complex numbers.

Create a new type

type ErrNegativeSqrt float64

and make it an error by giving it a

func (e ErrNegativeSqrt) Error() string

method such that ErrNegativeSqrt(-2).Error() returns
cannot Sqrt negative number: -2.
Note: a call to fmt.Print(e) inside the Error method will send the pro-

gram into an infinite loop. You can avoid this by converting e first: fmt.Print(float64(e)).
Why?

Change your Sqrt function to return an ErrNegativeSqrt value when
given a negative number.

7.3.1 Solution

http://play.golang.org/p/z50pUnAe4q
http://tour.golang.org/#58

70 CHAPTER 7. INTERFACES

package main

import (
"fmt"

)

type ErrNegativeSqrt float64

func (e ErrNegativeSqrt) Error() string {
return fmt.Sprintf("cannot Sqrt negative number: %g", float64(e))

}

func Sqrt(x float64) (float64, error) {
if x < 0 {

return 0, ErrNegativeSqrt(x)
}

z := 1.0
for i := 0; i < 10; i++ {

z = z - ((z*z)-x)/(2*z)
}
return z, nil

}

func main() {
fmt.Println(Sqrt(2))
fmt.Println(Sqrt(-2))

}

See in playground
Tip: When doing an inferred declaration of a float, you can omit the deci-

mal value and do the following:

z := 1.
// same as
// z := 1.0

http://play.golang.org/p/gY0vYSRvSL

Chapter 8

Concurrency
Concurrent programming is a large topic but it’s also one of the most interesting
aspects of the Go language.

Concurrent programming in many environments is made difficult by the
subtleties required to implement correct access to shared variables. Go encour-
ages a different approach in which shared values are passed around on channels
and, in fact, never actively shared by separate threads of execution. Only one
goroutine has access to the value at any given time. Data races cannot occur,
by design. To encourage this way of thinking we have reduced it to a slogan:

Do not communicate by sharing memory; instead, share memory by com-
municating.

This approach can be taken too far. Reference counts may be best done
by putting a mutex around an integer variable, for instance. But as a high-level
approach, using channels to control access makes it easier to write clear, correct
programs.

Although Go’s approach to concurrency originates in Hoare’s Communicat-
ing Sequential Processes (CSP), it can also be seen as a type-safe generalization
of Unix pipes.

• Rob Pike’s concurrency slides (IO 2012)

• Video of Rob Pike at IO 2012

• Video of Concurrency is not parallelism (Rob Pike)

71

http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://talks.golang.org/2012/concurrency.slide#1
http://www.youtube.com/watch?v=f6kdp27TYZs
http://vimeo.com/49718712

72 CHAPTER 8. CONCURRENCY

8.1 Goroutines
A goroutine is a lightweight thread managed by the Go runtime.

go f(x, y, z)

starts a new goroutine running:

f(x, y, z)

The evaluation of f, x, y, and z happens in the current goroutine and the
execution of f happens in the new goroutine.

Goroutines run in the same address space, so access to shared memory must
be synchronized. The sync package provides useful primitives, although you
won’t need them much in Go as there are other primitives.

package main

import (
"fmt"
"time"

)

func say(s string) {
for i := 0; i < 5; i++ {

time.Sleep(100 * time.Millisecond)
fmt.Println(s)

}
}

func main() {
go say("world")
say("hello")

}

See in playground
Go tour page

http://golang.org/pkg/sync/
http://play.golang.org/p/6PHXHha_Uv
http://tour.golang.org/#65

8.2. CHANNELS 73

8.2 Channels
Channels are a typed conduit through which you can send and receive values
with the channel operator, <-.

ch <- v // Send v to channel ch.
v := <-ch // Receive from ch, and

// assign value to v.

(The data flows in the direction of the arrow.)
Like maps (Section 4.4) and slices (Section 4.2), channels must be created

before use:

ch := make(chan int)

By default, sends and receives block until the other side is ready. This
allows goroutines to synchronize without explicit locks or condition variables.

package main

import "fmt"

func sum(a []int, c chan int) {
sum := 0
for _, v := range a {

sum += v
}
c <- sum // send sum to c

}

func main() {
a := []int{7, 2, 8, -9, 4, 0}

c := make(chan int)
go sum(a[:len(a)/2], c)
go sum(a[len(a)/2:], c)
x, y := <-c, <-c // receive from c

fmt.Println(x, y, x+y)
}

See in playground
Go tour page

http://play.golang.org/p/E-U0Kfd4IE
http://tour.golang.org/#66

74 CHAPTER 8. CONCURRENCY

8.2.1 Buffered channels
Channels can be buffered. Provide the buffer length as the second argument to
make to initialize a buffered channel:

ch := make(chan int, 100)

Sends to a buffered channel block only when the buffer is full. Receives
block when the buffer is empty.

package main

import "fmt"

func main() {
c := make(chan int, 2)
c <- 1
c <- 2
fmt.Println(<-c)
fmt.Println(<-c)

}

See in playground
But if you do:

package main

import "fmt"

func main() {
c := make(chan int, 2)
c <- 1
c <- 2
c <- 3
fmt.Println(<-c)
fmt.Println(<-c)
fmt.Println(<-c)

}

See in playground
You are getting a deadlock:

http://play.golang.org/p/o52Ur8W4gE
http://play.golang.org/p/eczbew4bL8

8.3. RANGE AND CLOSE 75

fatal error: all goroutines are asleep - deadlock!

That’s because we overfilled the buffer without letting the code a chance to
read/remove a value from the channel.

However, this version using a goroutine would work fine:

package main

import "fmt"

func main() {
c := make(chan int, 2)
c <- 1
c <- 2
c3 := func() { c <- 3 }
go c3()
fmt.Println(<-c)
fmt.Println(<-c)

fmt.Println(<-c)
}

See in playground
The reason is that we are adding an extra value from inside a go routine, so

our code doesn’t block the main thread. The goroutine is being called before
the channel is being emptied, but that is fine, the goroutine will wait until the
channel is available. We then read a first value from the channel, which frees a
spot and out goroutine can push its value to the channel.

Go tour page

8.3 Range and close
A sender can close a channel to indicate that no more values will be sent. Re-
ceivers can test whether a channel has been closed by assigning a second pa-
rameter to the receive expression: after

http://play.golang.org/p/YKg79QtX2q
http://tour.golang.org/#67

76 CHAPTER 8. CONCURRENCY

v, ok := <-ch

ok is false if there are no more values to receive and the channel is closed.
The loop for i := range c receives values from the channel repeatedly

until it is closed.
Note: Only the sender should close a channel, never the receiver. Sending

on a closed channel will cause a panic.
Another note: Channels aren’t like files; you don’t usually need to close

them. Closing is only necessary when the receiver must be told there are no
more values coming, such as to terminate a range loop.

package main

import (
"fmt"

)

func fibonacci(n int, c chan int) {
x, y := 0, 1
for i := 0; i < n; i++ {

c <- x
x, y = y, x+y

}
close(c)

}

func main() {
c := make(chan int, 10)
go fibonacci(cap(c), c)
for i := range c {

fmt.Println(i)
}

}

See in playground
Go tour page

http://play.golang.org/p/qtNyWuqESE
http://tour.golang.org/#68

8.4. SELECT 77

8.4 Select

The select statement lets a goroutine wait on multiple communication oper-
ations.

A select blocks until one of its cases can run, then it executes that case.
It chooses one at random if multiple are ready.

package main

import "fmt"

func fibonacci(c, quit chan int) {
x, y := 0, 1
for {

select {
case c <- x:

x, y = y, x+y
case <-quit:

fmt.Println("quit")
return

}
}

}

func main() {
c := make(chan int)
quit := make(chan int)
go func() {

for i := 0; i < 10; i++ {
fmt.Println(<-c)

}
quit <- 0

}()
fibonacci(c, quit)

}

See in playground

8.4.1 Default case

The default case in a select is run if no other case is ready.
Use a default case to try a send or receive without blocking:

http://play.golang.org/p/uf94rfXkva

78 CHAPTER 8. CONCURRENCY

select {
case i := <-c:

// use i
default:

// receiving from c would block
}

package main

import (
"fmt"
"time"

)

func main() {
tick := time.Tick(100 * time.Millisecond)
boom := time.After(500 * time.Millisecond)
for {

select {
case <-tick:

fmt.Println("tick.")
case <-boom:

fmt.Println("BOOM!")
return

default:
fmt.Println(" .")
time.Sleep(50 * time.Millisecond)

}
}

}

See in playground
Go tour page

8.4.2 Timeout

package main

import (
"fmt"
"log"
"net/http"
"time"

http://play.golang.org/p/s03PRK3FZe
http://tour.golang.org/#70

8.5. EXERCISE: EQUIVALENT BINARY TREES 79

)

func main() {
response := make(chan *http.Response, 1)
errors := make(chan *error)

go func() {
resp, err := http.Get("http://matt.aimonetti.net/")
if err != nil {

errors <- &err
}
response <- resp

}()
for {

select {
case r := <-response:

fmt.Printf("%s", r.Body)
return

case err := <-errors:
log.Fatal(err)

case <-time.After(200 * time.Millisecond):
fmt.Printf("Timed out!")
return

}
}

}

See in playground but note that in playground, you won’t get a response
due to sandboxing.

We are using the time.After call as a timeout measure to exit if the re-
quest didn’t give a response within 200ms.

8.5 Exercise: Equivalent Binary Trees

Online Assignment
There can be many different binary trees with the same sequence of values

stored at the leaves. For example, here are two binary trees storing the sequence
1, 1, 2, 3, 5, 8, 13.

http://play.golang.org/p/JGHVPCFNGm
http://tour.golang.org/#72

80 CHAPTER 8. CONCURRENCY

A function to check whether two binary trees store the same sequence is
quite complex in most languages. We’ll use Go’s concurrency and channels to
write a simple solution.

This example uses the tree package, which defines the type:

type Tree struct {
Left *Tree
Value int
Right *Tree

}

1. Implement the Walk function.

2. Test the Walk function.

The function tree.New(k) constructs a randomly-structured binary tree
holding the values k, 2k, 3k, . . . , 10k.

Create a new channel ch and kick off the walker:

go Walk(tree.New(1), ch)

Then read and print 10 values from the channel. It should be the numbers
1, 2, 3, . . . , 10.

8.5. EXERCISE: EQUIVALENT BINARY TREES 81

1. Implement the Same function using Walk to determine whether t1 and
t2 store the same values.

2. Test the Same function.

Same(tree.New(1), tree.New(1)) should return true, and Same(tree.New(1),
tree.New(2)) should return false.

8.5.1 Solution
If you print tree.New(1) you will see the following tree:

((((1 (2)) 3 (4)) 5 ((6) 7 ((8) 9))) 10)

To implement the Walk function, we need two things: * walk each side of
the tree and print the values * close the channel so the range call isn’t stuck.

We need to set a recursive call and for that, we are defining a non-exported
revWalk function, the function walks the left side first, then pushes the value
to the channel and then walks the right side. This allows our range to get the
values in the right order. Once all branches have been walked, we can close the
channel to indicate to the range that the walking is over.

package main

import (
"code.google.com/p/go-tour/tree"
"fmt"

)

// Walk walks the tree t sending all values
// from the tree to the channel ch.
func Walk(t *tree.Tree, ch chan int) {

recWalk(t, ch)
// closing the channel so range can finish
close(ch)

}

// recWalk walks recursively through the tree and push values to the channel
// at each recursion

82 CHAPTER 8. CONCURRENCY

func recWalk(t *tree.Tree, ch chan int) {
if t != nil {

// send the left part of the tree to be iterated over first
recWalk(t.Left, ch)
// push the value to the channel
ch <- t.Value
// send the right part of the tree to be iterated over last
recWalk(t.Right, ch)

}
}

// Same determines whether the trees
// t1 and t2 contain the same values.
func Same(t1, t2 *tree.Tree) bool {

ch1 := make(chan int)
ch2 := make(chan int)
go Walk(t1, ch1)
go Walk(t2, ch2)
// iterate over the first channel
for i := range ch1 {

// if the value of the second channel doesn't match
if i != <-ch2 {

return false
}

}
return true

}

func main() {
ch := make(chan int)
go Walk(tree.New(1), ch)
for v := range ch {

fmt.Println(v)
}
fmt.Println(Same(tree.New(1), tree.New(1)))
fmt.Println(Same(tree.New(1), tree.New(2)))

}

The comparison of the two trees is trivial once we know how to extract the
values of each tree. We just need to loop through the first tree (via the channel),
read the value, get the value from the second channel (walking the second tree)
and compare the two values.

See in playground

http://play.golang.org/p/I7FSCy_u8t

Chapter 9

Get Setup

9.1 OS X
The easiest way to install Go for development on OS X is to use homebrew.

Using Terminal.app install homebrew:

$ ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Once homebrew is installed, install Go to be able to crosscompile:

$ brew install go --cross-compile-common

In just a few minutes, go should be all installed and you should be almost
ready to code. However we need to do two small things before we start:

9.1.1 Setup your paths
By convention, all your Go code and the code you will import, will live inside
a workspace. This convention might seem rigid at first, but it quickly becomes
clear that such a convention (like most Go conventions) makes our life much
easier.

Before starting, we need to tell Go, where we want our workspace to be, in
other words, where our code will live. Let’s create a folder named “go” in our
home directory and set our environment to use this location.

83

http://brew.sh/

84 CHAPTER 9. GET SETUP

$ mkdir $HOME/go
$ export GOPATH=$HOME/go

Note that if we open a new tab or restart our machine, Go won’t know where
to find our workspace. For that, you need to set the export in your profile:

$ open $HOME/.bash_profile

Add a new entry to set GOPATH and add the workspace’s bin folder to your
system path:

export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

This will allow your Go workspace to always be set and will allow allow
you to call the binaries you compiled.

Official resource

9.1.2 Install mercurial and bazaar
Optionally but highly recommended, you should install mercurial and bazaar so
you can retrieve 3rd party libraries hosted using these version control systems.

$ brew install hg bzr

9.2 Windows
Install the latest version by downloading the latest installer.

Official resource

9.3 Linux
Install from one of the official linux packages Setup your path, as explained in
Section 9.1.1

http://golang.org/doc/code.html#GOPATH
http://golang.org/dl/
http://golang.org/doc/install#windows
http://golang.org/dl/

9.4. EXTRAS 85

9.4 Extras
Installing Godoc, vet and Golint, three very useful Go tools from the Go
team, is highly recommended:

$ go get code.google.com/p/go.tools/cmd/godoc
$ go get code.google.com/p/go.tools/cmd/vet
$ go get github.com/golang/lint/golint

Official resource

http://golang.org/doc/go1.2#go_tools_godoc

86 CHAPTER 9. GET SETUP

Chapter 10

Get Your Feet Wet

One of the best way to learn technical skills is to actually dive in as soon as we
have acquired the basics.

The following code was written by someone who just started learning Go.
Beginners often make the same mistakes so assume that this is your code and
you are now tasked to refactor it. The end goal is to create a CLI to interface
with the Pivotal Tracker API.

Cli Rescue repo

Fork the project as explained in the readme

Find a one or more people and work with them to see how you would ad-
dress this refactoring. Time to rescue this project!

87

https://github.com/GoBootcamp/clirescue
https://github.com/GoBootcamp/clirescue/blob/master/README.md

88 CHAPTER 10. GET YOUR FEET WET

Chapter 11

Tips and Tricks

This section will grow over time but the main goal is to share some tricks
experienced developers discovered over time. Hopefully this tips will get new
users more productive faster.

11.1 140 char tips
• leave your object oriented brain at home. Embrace the interface. @mikege-

hard

• Learn to do things the Go way, don’t try to force your language idioms
into Go. @DrNic

• It’s better to over do it with using interfaces than use too few of them.
@evanphx

• Embrace the language: simplicity, concurrency, and composition. @francesc

• read all the awesome docs that they have on golang.org. @vbatts

• always use gofmt. @darkhelmetlive

• read a lot of source code. @DrNic

89

https://twitter.com/mikegehard
https://twitter.com/mikegehard
https://twitter.com/drnic
https://twitter.com/evanphx
https://twitter.com/francesc
http://golang.org
https://twitter.com/vbatts
https://twitter.com/darkhelmetlive
https://twitter.com/drnic

90 CHAPTER 11. TIPS AND TRICKS

11.2 goimports
Goimports is a tool that updates your Go import lines, adding missing ones and
removing unreferenced ones.

It acts the same as gofmt (drop-in replacement) but in addition to code
formatting, also fixes imports.

11.3 Organization
Go is a pretty easy programming language to learn but the hardest thing that
developers at first is how to organize their code. Rails became popular for
many reasons and scaffolding was one of them. It gave new developers clear
directions and places to put their code and idioms to follow.

To some extent, Go does the same thing by providing developers with great
tools like go fmt and by having a strict compiler that won’t compile unused
variables or unused import statements.

11.4 Custom Constructors
A question I often hear is when should I use custom constructors like NewJob.
My answer is that in most cases you don’t need to. However, whenever you
need to set your value at initialization time and you have some sort of default
values, it’s a good candidate for a constructor. In the above example, adding a
constructor makes a lot of sense so we can set a default logger.

package main

import (
"log"
"os"

)

type Job struct {
Command string
*log.Logger

}

http://godoc.org/code.google.com/p/go.tools/cmd/goimports
http://blog.golang.org/go-fmt-your-code

11.5. BREAKING DOWN CODE IN PACKAGES 91

func NewJob(command string) *Job {
return &Job{command, log.New(os.Stderr, "Job: ", log.Ldate)}

}

func main() {
NewJob("demo").Print("starting now...")

}

11.5 Breaking down code in packages
See this blog post on refactoring Go code, the first part talks about package
organization.

11.6 Sets
You might want to find a way to extract unique value from a collection. In other
languages, you often have a set data structure now allowing duplicates. Go
doesn’t have that built in, however it’s not too hard to implement (due to a lack
of generics, you do need to do that for most types, which can be cumbersome).

// UniqStr returns a copy if the passed slice with only unique string results.
func UniqStr(col []string) []string {

m := map[string]struct{}{}
for _, v := range col {

if _, ok := m[v]; !ok {
m[v] = struct{}{}

}
}
list := make([]string, len(m))

i := 0
for v := range m {

list[i] = v
i++

}
return list

}

See in playground

http://matt.aimonetti.net/posts/2014/04/28/refactoring-go-code/
http://play.golang.org/p/AtG9pTe8yt

92 CHAPTER 11. TIPS AND TRICKS

I used a few interesting tricks that are interesting to know. First, the map of
empty structs:

m := map[string]struct{}{}

We create a map with the keys being the values we want to be unique,
the associated value doesn’t really matter much so it could be anything. For
instance:

m := map[string]bool{}

However I chose an empty structure because it will be as fast as a boolean
but doesn’t allocate as much memory.

The second trick can been seen a bit further:

if _, ok := m[v]; !ok {
m[v] = struct{}{}

}

What we are doing here, is simply check if there is a value associated with
the key v in the map m, we don’t care about the value itself, but if we know that
we don’t have a value, then we add one.

Once we have a map with unique keys, we can extract them into a new slice
of strings and return the result.

Here is the test for this function, as you can see, I used a table test, which
is the idiomatic Go way to run unit tests:

func TestUniqStr(t *testing.T) {

data := []struct{ in, out []string }{
{[]string{}, []string{}},
{[]string{"", "", ""}, []string{""}},
{[]string{"a", "a"}, []string{"a"}},
{[]string{"a", "b", "a"}, []string{"a", "b"}},
{[]string{"a", "b", "a", "b"}, []string{"a", "b"}},
{[]string{"a", "b", "b", "a", "b"}, []string{"a", "b"}},

11.7. DEPENDENCY PACKAGE MANAGEMENT 93

{[]string{"a", "a", "b", "b", "a", "b"}, []string{"a", "b"}},
{[]string{"a", "b", "c", "a", "b", "c"}, []string{"a", "b", "c"}},

}

for _, exp := range data {
res := UniqStr(exp.in)
if !reflect.DeepEqual(res, exp.out) {

t.Fatalf("%q didn't match %q\n", res, exp.out)
}

}

}

See in the playground

11.7 Dependency package management
Unfortunately, Go doesn’t ship with its own dependency package management
system. Probably due to its roots in the C culture, packages aren’t versioned
and explicit version dependencies aren’t addressed.

The challenge is that if you have multiple developers on your project, you
want all of them to be on the same version of your dependencies. Your depen-
dencies might also have their own dependencies and you want to make sure ev-
erything is in a good state. It gets even tricker when you have multiple projects
using different versions of the same dependency. This is typically the case in a
CI environment.

The Go community came up with a lot of different solutions for these prob-
lems. But for me, none are really great so at Splice we went for the simplest
working solution we found: gpm

Gpm is a simple bash script, we end up modifying it a little so we could
drop the script in each repo. The bash script uses a custom file called Godeps
which lists the packages to install.

When switching to a different project, we run the project gpm script to pull
down or set the right revision of each package.

In our CI environment, we set GOPATH to a project specific folder before
running the test suite so packages aren’t shared between projects.

http://play.golang.org/p/elRIpSKGjD
http://en.wikipedia.org/wiki/Continuous_integration
https://splice.com
https://github.com/pote/gpm
https://gist.github.com/mattetti/9334318

94 CHAPTER 11. TIPS AND TRICKS

11.8 Using errors
Errors are very important pattern in Go and at first, new developers are sur-
prised by the amount of functions returning a value and an error.

Go doesn’t have a concept of an exception like you might have seen in other
programming languages. Go does have something called panic but as its name
suggests they are really exceptional and shouldn’t be rescued (that said, they
can be).

The error handling in Go seems cumbersome and repetitive at first, but
quickly becomes part of the way we think. Instead of creating exceptions that
bubble up and might or might not be handled or passed higher, errors are part
of the response and designed to be handled by the caller. Whenever a function
might generate an error, its response should contain an error param.

Andrew Gerrand from the Go team wrote a great blog post on errors I
strongly recommend you read it.

Effective Go section on errors

11.9 Quick look at some compiler’s optimizations
You can pass specific compiler flags to see what optimizations are being ap-
plied as well as how some aspects of memory management. This is an advanced
feature, mainly for people who want to understand some of the compiler opti-
mizations in place.

Let’s take the following code example from an earlier chapter:

package main

import "fmt"

type User struct {
Id int
Name, Location string

}

func (u *User) Greetings() string {
return fmt.Sprintf("Hi %s from %s",

u.Name, u.Location)

https://twitter.com/enneff
http://blog.golang.org/error-handling-and-go
http://golang.org/doc/effective_go.html#errors

11.9. QUICK LOOK AT SOME COMPILER’S OPTIMIZATIONS 95

}

func NewUser(id int, name, location string) *User {
id++
return &User{id, name, location}

}

func main() {
u := NewUser(42, "Matt", "LA")
fmt.Println(u.Greetings())

}

• See in Playground

Build your file (here called t.go) passing some gcflags:

$ go build -gcflags=-m t.go
command-line-arguments
./t.go:15: can inline NewUser
./t.go:21: inlining call to NewUser
./t.go:10: leaking param: u
./t.go:10: leaking param: u
./t.go:12: (*User).Greetings ... argument does not escape
./t.go:15: leaking param: name
./t.go:15: leaking param: location
./t.go:17: &User literal escapes to heap
./t.go:15: leaking param: name
./t.go:15: leaking param: location
./t.go:21: &User literal escapes to heap
./t.go:22: main ... argument does not escape

The compiler notices that it can inline the NewUser function defined on
line 15 and inline it on line 21. Dave Cheney has a great post about why Go’s
inlining is helping your programs run faster.

Basically, the compiler moves the body of the NewUser function (L15) to
where it’s being called (L21) and therefore avoiding the overhead of a function
call but increasing the binary size.

The compiler creates the equivalent of:

http://play.golang.org/p/7y0-u_FiKD
http://dave.cheney.net/
http://dave.cheney.net/2014/06/07/five-things-that-make-go-fast

96 CHAPTER 11. TIPS AND TRICKS

func main() {
id := 42 + 1
u := &User{id, "Matt", "LA"}
fmt.Println(u.Greetings())

}

On a few lines, you see the potentially alarming leaking param message.
It doesn’t mean that there is a memory leak but that the param is kept alive even
after returning. The “leaked params” are:

• On the Greetings’s method: u (receiver)

• On the NewUser’s functon: name, location

The reason why u “leaks” in the Greetings method is because it’s being
used in the fmt.Sprintf function call as an argument. name and location
are also “leaked” because they are used in the User’s literal value. Note that
id doesn’t leak because it’s a value, only references and pointers can leak.

X argument does not escape means that the argument doesn’t “es-
cape” the function, meaning that it’s not used outside of the function so it’s
safe to store it on the stack.

On the other hand, you can see that &User literal escapes to heap.
What it means is that the address of a literal value is used outside of the func-
tion and therefore can’t be stored on the stack. The value could be stored on
the stack, except a pointer to the value escapes the function, so the value has
to to be moved to the heap to prevent the pointer referring to incorrect memory
once the function returns. This is always the case when calling a method on a
value and the method uses one or more fields.

11.10 Expvar

TODO package

http://golang.org/pkg/expvar/

11.11. SET THE BUILD ID USING GIT’S SHA 97

11.11 Set the build id using git’s SHA
It’s often very useful to burn a build id in your binaries. I personally like to use
the SHA1 of the git commit I’m committing. You can get the short version of
the sha1 of your latest commit by running the following git command from
your repo:

git rev-parse --short HEAD

The next step is to set an exported variable that you will set at compilation
time using the -ldflags flag.

package main

import "fmt"

// compile passing -ldflags "-X main.Build <build sha1>"
var Build string

func main() {
fmt.Printf("Using build: %s\n", Build)

}

See in playground
Save the above code in a file called example.go. If you run the above

code, Build won’t be set, for that you need to set it using go build and the
-ldflags.

$ go build -ldflags "-X main.Build a1064bc" example.go

Now run it to make sure:

$./example
Using build: a1064bc

Now, hook that into your deployment compilation process, I personally like
Rake to do that, and this way, every time I compile, I think of Jim Weirich.

http://play.golang.org/p/8wbsQ53ZV5
http://en.wikipedia.org/wiki/Rake_(software)
http://en.wikipedia.org/wiki/Jim_Weirich

98 CHAPTER 11. TIPS AND TRICKS

11.12 How to see what packages my app imports
It’s often practical to see what packages your app is importing. Unfortunately
there isn’t a simple way to do that, however it is doable via the go list tool
and using templates.

Go to your app and run the following.

$ go list -f '{{join .Deps "\n"}}' |
xargs go list -f '{{if not .Standard}}{{.ImportPath}}{{end}}'

Here is an example with the clirescue refactoring example:

$ cd $GOPATH/src/github.com/GoBootcamp/clirescue
$ go list -f '{{join .Deps "\n"}}' |
xargs go list -f '{{if not .Standard}}{{.ImportPath}}{{end}}'

github.com/GoBootcamp/clirescue/cmdutil
github.com/GoBootcamp/clirescue/trackerapi
github.com/GoBootcamp/clirescue/user
github.com/codegangsta/cli

If you want the list to also contain standard packages, edit the template and
use:

$ go list -f '{{join .Deps "\n"}}' | xargs go list -f '{{.ImportPath}}'

11.13 Web resources
• Dave Cheney maintains a list of resources for new Go developers.

https://twitter.com/davecheney
http://dave.cheney.net/resources-for-new-go-programmers

Chapter 12

Exercises
We have 4 exercises to choose from, each exercise focuses on different chal-
lenges. Try to tackle the exercise of your choice by pairing with at least one
person, ideally try to have 4 people by group.

Fork the original repo (with the instructions), work on and it and send a pull
request when you are done.

If your group wants to work on a new exercise, please create an assignment
and send it to me (Matt) so I can add it to the repository and the following list.

• avatar me

– Hashing

– image manipulation

• remote commands

– Concurrency (channels, go routines)

– Network interface

– depending on the commands you implement

• copernic 2000

– concurrency

99

https://github.com/GoBootcamp/avatarme
https://github.com/GoBootcamp/remotecmds
https://github.com/GoBootcamp/copernic

100 CHAPTER 12. EXERCISES

– consumption of web resources (http/json/XML)

– sorting

– data sets

– data storage

• Godoc API

– Building a web API

– Testing a web API

– JSON encoding/decoding

– Exploring godoc

– Extending existing packages or

– Shelling out

https://github.com/GoBootcamp/godocapi

	Preface
	Intro
	Objectives
	Knowledge
	Skills
	Attitudes

	The Basics
	Variables & inferred typing
	Constants
	Printing Constants and Variables
	Packages and imports
	Code location
	Exported names
	Functions, signature, return values, named results
	Pointers
	Mutability

	Types
	Basic types
	Type conversion
	Type assertion
	Structs
	Initializing
	Composition vs inheritance
	Exercise
	Solution

	Collection Types
	Arrays
	Printing arrays
	Multi-dimensional arrays

	Slices
	Slicing a slice
	Making slices
	Appending to a slice
	Length
	Nil slices
	Resources

	Range
	Break & continue
	Range and maps
	Exercise
	Solution

	Maps
	Mutating maps
	Resources
	Exercise
	Solution

	Control flow
	If statement
	For Loop
	Switch case statement
	Exercise
	Solution

	Methods
	Code organization
	Type aliasing
	Method receivers

	Interfaces
	Interfaces are satisfied implicitly
	Errors
	Exercise: Errors
	Solution

	Concurrency
	Goroutines
	Channels
	Buffered channels

	Range and close
	Select
	Default case
	Timeout

	Exercise: Equivalent Binary Trees
	Solution

	Get Setup
	OS X
	Setup your paths
	Install mercurial and bazaar

	Windows
	Linux
	Extras

	Get Your Feet Wet
	Tips and Tricks
	140 char tips
	goimports
	Organization
	Custom Constructors
	Breaking down code in packages
	Sets
	Dependency package management
	Using errors
	Quick look at some compiler's optimizations
	Expvar
	Set the build id using git's SHA
	How to see what packages my app imports
	Web resources

	Exercises

