
International Technical Support Organization

OS/2 Security Enabling Services:
A Developer ´s Guide

May 1996

SG24-4668-00

International Technical Support Organization

OS/2 Security Enabling Services:
A Developer ´s Guide

May 1996

SG24-4668-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xv.

First Edition (May 1996)

This edition applies to OS/2 Security Enabling Services for use with the OS/2 V2.11 or
OS/2 Warp V3.0 plus a fixpak.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLPC Building 014 Internal Zip 5220
1000 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

This document describes the Security Enabling Services for OS/2 Version
2.11 and OS/2 Warp, in respect to its functions that may be utilized by
software developers. It provides a discussion and examples of using this
new feature and documents the API so that developers can produce security
products that interface closely with OS/2 and offer C2 like functionality.

This document was written for developers, and IBM and customer technical
personnel. Some knowledge of OS/2 and security issues is assumed.

(331 pages)

 Copyright IBM Corp. 1996 iii

iv OS/2 API Security Developers Guide

Contents

Abstract . i i i

Figures . xi

Tables . xii i

Special Notices . xv

Preface . xvii
How This Document is Organized . xvii
International Technical Support Organization Publications xvii
ITSO Redbooks on the World Wide Web (WWW) xviii
Acknowledgments . xix

Part 1. Developer ′s Guide . 1

Chapter 1. Introduction to Security Enabling Services 3
1.1 Prerequisite Knowledge . 4
1.2 Chapter Breakdown . 4

Chapter 2. Security Requirements . 7
2.1 Orange Book Security Criteria . 10

2.1.1 Continuous Protection . 12
2.1.2 Security Policy . 13
2.1.3 Accountability . 15
2.1.4 Assurance . 17

Chapter 3. Security Enabling Services Overview 19
3.1 Installable Security Subsystem (ISS) 21
3.2 Security Enabling Services . 21

3.2.1 Security Kernel Services . 22
3.2.2 Security Context Services . 22
3.2.3 Logon Shell Services . 23
3.2.4 Installation, Configuration, Initialization Support 23

3.3 SES and ISS Communication . 23
3.3.1 Summary . 25

Chapter 4. Security Enabling Services . 27
4.1 SES Overview . 27

 Copyright IBM Corp. 1996 v

4.2 Security Kernel Services (SKS) . 29
4.2.1 Security Relevant Event Interception and Routing (Hooks) . . . 31
4.2.2 Kernel Level Operating System Services 31

4.3 Security Context Services (SCS) . 31
4.3.1 Process, Handle and Thread Models 33
4.3.2 Multiple Concurrently Active Security Applications 39
4.3.3 Multiple Concurrently Active Users 41
4.3.4 Trusted Program/Process . 42

4.4 Logon Shell Services (LSS) . 43
4.4.1 Overview of Key Logon Shell Services Components 46
4.4.2 Overview of Key LSS Operations 51

4.5 Installation, Configuration and Initialization Support (ICIS) 62

Chapter 5. Installable Security Subsystem 65
5.1 What Is an Installable Security Subsystem? 66
5.2 What Are the Typical Components of an ISS? 67
5.3 What Support Does SES Provide for an ISS? 70

5.3.1 Security Context . 70
5.3.2 Privileges and Authorities . 70
5.3.3 Programming Interfaces . 76

5.4 Installable Security Subsystem Summary 77

Part 2. Design Notes . 79

Chapter 6. Introduction to SES Development 81
6.1 Chapter Breakdown . 82

Chapter 7. Building an Installable Security Subsystem 85
7.1 Logon . 86
7.2 Resource Access Control . 87
7.3 Audit . 88
7.4 Single Signon . 89
7.5 Trusted Program Support . 89

Chapter 8. Installable Security Subsystem Design Guidelines 91

Chapter 9. SES Architecture Implementation 95
9.1 Security Kernel Services . 96

9.1.1 Security Event Router . 98
9.1.2 Security Helpers . 99

9.2 Security Context Services . 100
9.2.1 Process-User Association . 102

vi OS/2 API Security Developers Guide

9.2.2 Process-Status Association . 108
9.2.3 Definition of Security Context . 110
9.2.4 SCS Programming Interfaces . 128

9.3 Logon Shell Services . 130
9.3.1 Key Components . 131
9.3.2 Definition of Local System Logon 135
9.3.3 Definition of a Guest User . 136
9.3.4 Overview of Keyboard/Mouse Support 139
9.3.5 LSS Programming Interfaces . 140

9.4 Installation, Configuration, Initialization Support 142
9.4.1 Installation . 142
9.4.2 Configuration . 142
9.4.3 Initialization . 144

Chapter 10. Interoperation of SES and ISS 147

Chapter 11. Security Kernel Services (SKS) 151
11.1 Kernel Callouts Imported from the ISS 152

11.1.1 Callouts for Security Relevant OS/2 System Calls 152
11.1.2 Callouts for Callgate Level Support 153
11.1.3 Callouts for Multiple Virtual DOS Machine Support 154
11.1.4 Callouts for Logon Shell Services Trusted Path Support 155
11.1.5 Callouts for Security Enabling Services API Audit Support . . . 156

11.2 Kernel Services Exported to the ISS 156
11.2.1 Security Helpers for File System Services 156
11.2.2 Security Helpers for Security Context Services 156

11.3 Security Kernel Services KPI . 156
11.4 Security Kernel Services Scenarios 157

11.4.1 ISS Security Kernel Initialization 158
11.4.2 File System Open Callout . 159

Chapter 12. Security Context Services (SCS) 161
12.1 Security Context Authority Roles . 161

12.1.1 Acces Control Authority (ACA) 161
12.1.2 Agent Process Authority (APA) 162
12.1.3 Client Logon Authority (CLA) . 163
12.1.4 Remote Logon Authority (RLA) 165
12.1.5 System Logon Authority (SLA) . 166
12.1.6 Server Process Authority (SPA) 167
12.1.7 User Identification Authority (UIA) 170

12.2 Initialization of Security Context Services 171
12.3 Establishment of Security Context at Process Creation 173
12.4 Association of Security Context with OS/2 IPC 177

Contents vii

12.5 Security Context Services API . 178
12.6 SCS Scenarios . 180

12.6.1 A User Logs on Remotely to an Application Server 180
12.6.2 An Untrusted Process Creates an Untrusted Child Process . . 183
12.6.3 A Process Sends Its Security Context to an SCA Process . . . 184
12.6.4 An SPA Process Acts As Proxy for Its Client Processes 186

Chapter 13. Logon Shell Services (LSS) . 189
13.1 Overview of LSS Event Flows . 190

13.1.1 Logon/Unlock . 190
13.1.2 Lock/Logoff/Shutdown . 191
13.1.3 Change Password . 192

13.2 Overview of Keyboard/Mouse Support 192
13.2.1 Trusted Path Support . 192
13.2.2 Keyboard/Mouse Activity Detection 193
13.2.3 Keyboard/Mouse Inactivity Detection 194

13.3 System Logon Driver API . 194
13.4 Client Logon Driver API . 196
13.5 Password Validation Driver API . 196
13.6 Logon Shell Services API . 197
13.7 Logon Shell Services Kernel Programming Interface 198

13.7.1 Callouts to the ISS Security Kernel for LSS Functions 198
13.8 Logon Shell Services (LSS) Scenarios 198

13.8.1 Logon . 198
13.8.2 Unlock . 204
13.8.3 Logoff, Shutdown . 208
13.8.4 Lock . 210
13.8.5 Change Password . 212
13.8.6 Create User Profile, Delete User Profile 215
13.8.7 Identification and Authentication 217
13.8.8 Send Security Context . 220
13.8.9 Process Creation . 221
13.8.10 Trusted Path . 223

Chapter 14. Installation, Configuration, Initialization Support 225
14.1 Installation . 225
14.2 Configuration . 226

14.2.1 CONFIG.SYS . 226
14.2.2 SECURE.SYS . 227

14.3 Initialization . 230

Part 3. Appendices . 235

viii OS/2 API Security Developers Guide

Chapter 15. KPI and API Calls . 237
15.1 Chapter Breakdown . 237

Appendix A. Security Kernel Services KPI Details 239

Appendix B. Security Context Services (SCS) API Details 241
B.1 SESControlProcessCreation . 241
B.2 SESCreateHandleNotify . 242
B.3 SESCreateInstanceHandle . 243
B.4 SESCreateSubjectHandle . 244
B.5 SESDeleteHandleNotify . 245
B.6 SESDeleteSubjectHandle . 246
B.7 SESKillProcess . 247
B.8 SESlogIntegrityViol . 248
B.9 SESQueryAuthorityID . 248
B.10 SESQueryContextStatus . 249
B.11 SESQueryProcessInfo . 250
B.12 SESQuerySecurityContext . 253
B.13 SESQuerySubjectHandle . 254
B.14 SESQuerySubjectHandleInfo . 255
B.15 SESQuerySubjectInfo . 256
B.16 SESReleaseSubjectHandle . 258
B.17 SESReserveSubjectHandle . 259
B.18 SESResetThreadContext . 260
B.19 SESSendSecurityContext . 261
B.20 SESSetContextStatus . 262
B.21 SESSetSecurityContext . 264
B.22 SESSetSubjectHandle . 266
B.23 SESSetSubjectInfo . 267

Appendix C. System Logon Driver API Details 271
C.1 SLDInit . 271
C.2 SLDQueryUIA . 271

Appendix D. Client Logon Driver API Details 275
D.1 CLDInit . 275
D.2 CLDQueryCLA . 275

Appendix E. Password Validation Driver API Details 279
E.1 PVDValidatePassword . 279

Appendix F. Logon Shell Services API Details 281
F.1 SESControlKBDMonitors . 281

Contents ix

F.2 SESInactivityNotify . 282
F.3 SESRegisterDaemon . 283
F.4 SESReturnEventStatus . 285
F.5 SESReturnWaitEvent . 288
F.6 SESStartEvent . 290
F.7 SESWaitEvent . 292

Appendix G. Security Enabling Services Error Codes 299

Appendix H. Customer Thoughts on Security Products 301

Glossary . 309

List of Abbreviations . 317

Index . 321

x OS/2 API Security Developers Guide

Figures

 1. Components of a Secured OS/2 Workstation 20
 2. SES - Key Components of the OS/2 Enabling Strategy 28
 3. SKS - Hooks and Services for the ISS Security Kernel 30
 4. SCS - Single Process Model . 32
 5. SCS - Multiple Process Model . 34
 6. SCS - Subject Handle Model . 35
 7. SCS - Trusted Process Model . 36
 8. SCS - Thread Context Model . 38
 9. LSS - Coordination of Logon Session Events 46
10. LSS - Overview of Logon Session Events 54
11. ISS - Overview of a Secured OS/2 System 66
12. ISS - Components . 67
13. ISS - APA and SPA . 73
14. ISS - Interoperation of Security Context Authorities 75
15. ISS - Kernel Programming Interface 77
16. SES Architecture - Overview of Key Components 96
17. SKS Architecture - Interaction between SKS and ISS Security Kernel 97
18. SCS Architecture - User/Group/Process Security Credentials . . . 101
19. SCS Architecture - Subject Handles 104
20. SCS Architecture - Instance Handles 107
21. SCS Architecture - Process Authority 109
22. LSS Architecture - Interaction between LSS and Security

Applications . 132
23. LSS Architecture - Overview of Keyboard/Mouse Support 139
24. SES System Design - Interoperation of Key Components 148
25. SKS System Design - OS/2 System Call Hooks 153
26. SKS System Design - OS/2 Callgate Level Hooks 154
27. SKS System Design - ISS Initialization Scenario 158
28. SKS System Design - File Open Callout Scenario 159
29. SCS System Design - Trusted Agent/Server Programs 169
30. SCS System Design - Remote Logon Scenario 181
31. SCS System Design - Process Creation Scenario 183
32. SCS System Design - Inter-Process Communication Scenario . . . 184
33. SCS System Design - Trusted Server Process Scenario 186
34. ICIS System Design - Example of SES and ISS Initialization 233

 Copyright IBM Corp. 1996 xi

xii OS/2 API Security Developers Guide

Tables

 1. Suggested Mapping of SES Privileges to ISS Functions 68
 2. Applicable SCA, API, KPI, and DLL for Logon 87
 3. Applicable SCA, API, KPI, and DLL for DAC 88
 4. Applicable SCA, API, KPI, and DLL for Audit 88
 5. Applicable SCA, API, KPI, and DLL for Single Signon 89
 6. Applicable SCA, API, KPI, and DLL for Trusted Program Support . 90
 7. Logon Shell Services Functions . 197
 8. Address of Subject Information . 244
 9. Effective Security Context Structure 264
10. SES Status on Input . 273
11. SES Status on Output . 273
12. Event Status and Sources . 294

 Copyright IBM Corp. 1996 xiii

xiv OS/2 API Security Developers Guide

Special Notices

This publication is intended to help developers, IBM and customer support
personnel as well as dealers, understand the features of Security Enabling
Services. It provides the means for people to develop security solutions for
their environment or customers. A developer must understand the
background information provided before developing a secure OS/2 solution.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, Stamford,
CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

DB2/2 IBM

 Copyright IBM Corp. 1996 xv

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks of Microsoft
Corporation.

Other trademarks are trademarks of their respective companies.

OS/2 RACF
Workplace Shell

xvi OS/2 API Security Developers Guide

Preface

This document is intended to provide an overview of OS/2 Security Enabling
Services. It contains information about the security enabling services which
may be installed on top of OS/2 as part of a customer′s security strategy.
This facility is available for OS/2 V2.11 and OS/2 Warp.

This document is intended for developers, IBM customers and employees
requiring an overview and API guide for security enabling services.

How This Document is Organized
The document is organized as follows:

• Part 1, “Developer′s Guide”

This provides an overview of Security Enabling Services and the
requirements for workstation security and the functional requirements for
C2.

• Part 2, “Design Notes”

This provides details of the Security Enabling Services architecture and
information required to allow a developer to build an ISS.

• Part 3, “Appendices”

This provides detailed information on the KPI and API that is available in
Security Enabling Services.

International Technical Support Organization Publications
• OS/2 Security Enabling Services, SG24-4568

• Security Enhancement Solutions for Workstations, SG24-4569

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

 Copyright IBM Corp. 1996 xvii

A listing of all redbooks, sorted by category, may also be found on
MKTTOOLS as ITSOCAT TXT. This package is updated monthly.

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755
or by faxing 1-800-445-9269. Most major credit cards are accepted.
Outside the USA, customers should contact their local IBM office. For
guidance on ordering, send a PROFS note to BOOKSHOP at DKIBMVM1
or E-mail to bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called BOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide
Web home page. To access the ITSO Web pages, point your Web browser to
the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal
Redbooks home page may be found at the following URL:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

xviii OS/2 API Security Developers Guide

Acknowledgments
This project was designed and managed by:

Lajos Damen
International Technical Support Organization, Boca Raton Center

The author of this document is:

John Divers
IBM UK

This publication is the result of a residency conducted at the International
Technical Support Organization, Boca Raton Center.

Thanks to the following people for the invaluable advice and guidance
provided in the production of this document:

Harry Benas
Security Development, IBM Boca Raton

Graham Cogle
IBM UK

Bill Coltin
Security Development, IBM Boca Raton

Tony DiDaniele
Security Development, IBM Boca Raton

Mickey Galper
Security Development, IBM Boca Raton

Andy Low
IBM UK

Linda Paulat
Security Development, IBM Boca Raton

Bruce Scheer
Security Development, IBM Boca Raton

Doc Shankar
Security Development, IBM Boca Raton

Preface xix

xx OS/2 API Security Developers Guide

Part 1. Developer ′s Guide

 Copyright IBM Corp. 1996 1

2 OS/2 API Security Developers Guide

Chapter 1. Introduction to Security Enabling Services

About This Part

The OS/2 Security Enabling Services (SES) enables an Installable Security
Subsystem (ISS) to provide C2-level operating system security services
such as user identification and authentication, file/directory level access
control and audit, and process level security context, etc.

This document is divided into three parts. This part deals mainly with the
following:

• Background and overview information on Security Enabling Services
(SES).

Discusses the concept of operating system security with an emphasis
on customer requirements and the OS/2 security enabling strategy.

• Definition of operating system security

Looks at what operating system security means in an OS/2
environment and the role of Security Enabling Services (SES) in a
secured OS/2 workstation.

• Brief details of C2 security requirements

Discusses the functional requirements needed to satisfy C2 and how
Security Enabling Services (SES) is intended to assist an Installable
Security Subsystem (ISS) meet these requirements.

• Architecture overview

Describes the contents of the OS/2 security enabling architecture,
including Installable Security Subsystem (ISS) development and
specific OS/2 security enabling services.

• Overview of an Installable Security Subsystem (ISS)

Discusses the type of development that would be required to provide
an installable security subsystem that will make use of the security
enabling services functions.

 Copyright IBM Corp. 1996 3

1.1 Prerequisite Knowledge
This document is intended for use by security application developers who are
familiar with the following:

• Workstation security.

• Workstation programming.

• Basic AIX and OS/2 concepts (for example, shells, processes, and
threads). These concepts may be discussed in this document but will not
be defined here. Definitions of these concepts may be found in the
appropriate product documentation.

A basic understanding of security enabling services may be obtained from
the (OS/2 Security Enabling Services redbook SG24-4568) . An understanding
of information security concepts, the need for workstation security, and the
reason why certain security features are desirable, may be found in the
(Security Enhancements Solutions for Workstations redbook SG24-4569)

For technical details about the OS/2 Security Enabling Services, including
specifics about programming interfaces, refer to Part 2, “Design Notes” on
page 79 of this document.

The appendices provide detailed information on the API calls available in
security enabling services, and a summary of Security Enabling Services
error codes referenced in this document. A glossary of the terminology used
and an abbreviations list are also provided for convenience.

1.2 Chapter Breakdown
This developer′s guide section contains general information and points to the
sections in the security enabling services document that provide more
technical information.

The chapters in this part are:

• Chapter 1, “Introduction to Security Enabling Services”

This chapter provides an overview of this part of the document and some
information about prerequisite knowledge that is required by developers.

• Chapter 2, “Security Requirements”

This chapter provides an overview of security requirements and looks at
the criteria to satisfy C2 functional requirements.

4 OS/2 API Security Developers Guide

• Chapter 3, “Security Enabling Services Overview”

This chapter provides an overview of security enabling services and what
each of the components provides.

• Chapter 4, “Security Enabling Services”

This chapter provides more details of each of the security enabling
services components and looks at the main points of each of the
components.

• Chapter 5, “Installable Security Subsystem”

This chapter reviews what an installable security subsystem is and how
security enabling services provides support for the installable security
subsystem.

Chapter 1. Introduction to Security Enabling Services 5

6 OS/2 API Security Developers Guide

Chapter 2. Security Requirements

Protection of workstation resources is a primary concern of customers.
Information that can be accessed through the workstations may be critical
and vital; its loss, destruction or exposure may be devastating. Customers
depend upon their workstations to provide support for the security policies
that protect this vital information. This leads to customers requesting some
basic security functions. Among the functions requested are the following:

• Identification and Authentication (I&A) Identification and authentication is
the means by which a user is granted approved access to the system.
There are the following three ways this requirement could be
implemented:

 1. Something the user knows. An example of this type of
implementation is a password. Passwords are the most commonly
used identification and authentication mechanisms. They are the
defaults for identification and authentication security for a large
number of computer systems. A set of rules for password creation
and utilization can be built into the system. Some systems even
include password generators as a means of controlling the selection
of passwords. The use of passwords has become prevalent in the
security community. U.S. Department of Defense (DoD) guidelines for
password usage have been published as part of the Rainbow Series
(see the Department of Defense Password Management Guideline,
also known as the Green book, for more information).

It′s easy to design a password checking mechanism for a computer
system. But there are problems associated with the use of
passwords. In order to prevent someone from guessing a user′s
password, the password must be fairly complex. But if the password
is too complex, the user may not be able to remember it. If a
password is written down or stored in clear text, it may be read by
the wrong person.

 2. Something physical. Tokens and smart cards are typical examples of
this type of security implementation. These are physical devices,
which may be inserted into a device reader, or may generate a
special code that the user types into the computer system. An
assumption is made that the user who physically controls these
devices is the person who should have them. But since they are
physical devices, it is possible that they may be stolen and used by
the wrong person.

 Copyright IBM Corp. 1996 7

These devices are sometimes used as secondary authentication
devices. For systems that use them as such, a password would
probably be the first means of authentication. A user would have to
enter a password, then use the device, in order to gain access to the
system resources.

 3. Something unique. This type of implementation is performed through
the use of biometrics. Biometrics includes fingerprint analysis,
retinal scans, voice signature analysis and keystroke analysis. An
on-the-spot analysis of a biological characteristic of the user is
performed when a request for system access is made. The new data
is compared against a previously obtained biological pattern. This is
a very effective means of identifying a user, but it is sometimes
difficult to gain customer acceptance.

It′s possible to blend any of the basic implementations mentioned above
into different secure system combinations, depending upon the
customer ′s needs.

• Discretionary Access Control (DAC)

System access based upon the identity of users or groups is the
fundamental concept behind discretionary access control. Discretionary
access control is typically implemented by access control lists or file
permission bits, and can be applied at the discretion of the owner of the
object being controlled. A file is an example of an object that can be
controlled under discretionary access control.

• Audit

Audit is the ability to record significant system events. One of the most
difficult tasks in designing an audit system is determining just exactly
what needs to be audited. The minimum set of events that must be
audited for system security include logon/logoff, file access and security
policy violations. Other events may be audited at the discretion of the
system designer, per specific customer requirements. Guidelines for
audit collection may be found in a Rainbow series book called (″A Guide
to Understanding Audit in Trusted Systems″) (known as the Tan book)
released by the U.S. Department of Defense.

In addition to these requirements, there are other frequent customer
requests. These requests are normally for facilities that will aid user
productivity or counter a specific problem. The most common requests are
for single signon and trusted program capabilities.

8 OS/2 API Security Developers Guide

• Single Signon

Users who run multiple applications or who have access to multiple user
accounts across networks frequently request a single signon capability.
This allows the users to enter their identification and authentication data
once and have access to all the system and network resources that they
are allowed, rather than having to enter the identification and
authentication data multiple times.

• Trusted Program Support

Programs that need privileged access to the security services or secured
information controlled by the identification and authentication,
discretionary access control, or audit mechanisms are called trusted
programs.

The customer requirements for trusted programs may be driven by the
following:

− The need to counter a specific perceived threat.

− The need to meet a predefined set of security requirements, such as
those defined in the United States Department of Defense (″Trusted
Computer System Evaluation Criteria″) (TCSEC or orange book). For
example, the orange book describes identification and authentication,
discretionary access control, audit, and object reuse protection
requirements for C2 security.

Note: In addition to the trusted computer system evaluation criteria,
customers may be concerned with the European Information
Technology Security Evaluation Criteria (ITSEC), the Canadian
Trusted Computer Product Evaluation Criteria (CTCPEC), or
customer specific certification criteria. However, identification and
authentication, discretionary access control and audit are basic
requirements that are applicable to all the criteria.

Workstation operating systems can be designed to accommodate the
customer ′s security requirements. A key concept in secure system design is
the notion of a trusted computing base. The trusted computing base consists
of all the code that must be trusted to enforce the security policies of the
operating system. In general, the trusted computing base contains all the
code that runs in the privileged state of the hardware, or any user level code
that runs with special privileges. An application that runs with these special
privileges is called a trusted (secure) program or application and is
considered to be part of the trusted computing base. An example of a
trusted application would be a secure Database Management System
(DBMS).

Chapter 2. Security Requirements 9

The OS/2 base operating system doesn′ t supply specific functions which
directly address the security requirements discussed above; it does, however
provide support for what is called an installable security subsystem. The
installable security subsystem, typically developed by an independent
software vendor, contains specific security functions, which, when combined
with the base OS/2 system, provide a secure OS/2 system.

2.1 Orange Book Security Criteria
Please note: This entire section was copied (with liberal paraphrasing and
interpretation) from various sections of the Department of Defense (″Trusted
Computer Security Evaluation Criteria″) (TCSEC or orange book). The intent
is to provide background information on C2 functional requirements, not to
provide a precise definition of C2 security criteria. The focus is on C2
function identification and authentication, discretionary access control, audit,
object reuse protection, but the criteria includes descriptions of related
function from all classes/divisions (C2, B1). For example, a description of
trusted path is included in this section because it′s an important aspect of
identification and authentication (C2 requirement), but trusted path is
specified as a criteria for B2 in the trusted computer security evaluation
criteria.

Any discussion of computer security necessarily starts from a statement of
requirements, for example what it really means to call a computer system
secure. In general, secure systems will control, through the use of specific
features, access to information such that only properly authorized
individuals, or processes operating on their behalf, will have access to read,
write, create, or delete information. The following fundamental requirements
are derived from this basic statement of objective:

Continuous Protection The trusted mechanisms that enforce these basic
requirements must be continuously protected against
tampering and/or unauthorized changes. No
computer system can be considered truly secure if
the basic hardware and software mechanisms that
enforce the security policy are themselves subject to
unauthorized modification or subversion.

Security Policy There must be an explicit and well-defined security
policy enforced by the system. Given identified
subjects and objects, there must be a set of rules
that are used by the system to determine whether a
given subject can be permitted to gain access to a

10 OS/2 API Security Developers Guide

specific object. Discretionary security controls are
required to ensure that only selected users or
groups of users may obtain access to data (such as
based on a need-to-know).

Identification Individual subjects must be identified. Each access
to information must be mediated based on the
identity and authority of the person accessing the
information. This identification and authorization
information must be securely maintained by the
computer system and be associated with every
active element that performs some security-relevant
action in the system.

Accountability Audit information must be selectively kept and
protected so that actions affecting security can be
traced to the responsible party. A trusted system
must be able to record the occurrences of
security-relevant events in an audit log. The
capability to select the audit events to be recorded is
necessary to minimize the expense of auditing and
to allow efficient analysis. Audit data must be
protected from modification and unauthorized
destruction to permit detection and after-the-fact
investigations of security violations.

Assurance The computer system must contain
hardware/software mechanisms that can be
independently evaluated to provide sufficient
assurance that the system enforces the above
requirements. In order to assure that the above
requirements are enforced by a computer system,
there must be some identified and unified collection
of hardware and/or software controls that perform
those functions. These mechanisms are typically
embedded in the operating system and are designed
to carry out the assigned tasks in a secure manner.
The basis for trusting such system mechanisms in
their operational setting must be clearly documented
so that it is possible to independently examine the
evidence to evaluate their sufficiency.

Chapter 2. Security Requirements 11

2.1.1 Continuous Protection
This section describes the basis for establishing and maintaining the integrity
of the system.

2.1.1.1 Trusted Computing Base
The trusted computing base is the totality of protection mechanisms within a
computer system, including hardware, firmware, and software; the
combination of which is responsible for enforcing a security policy. A trusted
computing base consists of one or more components that together enforce a
unified security policy over a product or system. The ability of a trusted
computing base to correctly enforce a security policy depends solely on the
mechanisms within the trusted computing base and on the correct input by
system administrative personnel of parameters (such as a user′s credentials)
related to the security policy.

In the interest of understandable and maintainable protection, the trusted
computing base should be as simple as possible consistent with the
functions it has to perform. Thus, the trusted computing base must be
designed and implemented so that system elements excluded from it need
not be trusted to maintain protection. The trusted computing base will
necessarily include all those elements of the operating system and
application software essential to the support of the security policies. Note
that, as the amount of code in the trusted computing base increases, it
becomes harder to be confident that the trusted computing base enforces the
security policies under all circumstances.

2.1.1.2 Reference Monitor and Security Kernel
A reference monitor is an access control concept that refers to an abstract
machine that mediates all accesses to objects by subjects. The reference
monitor validates each reference to data or programs by any user (program)
against a list of authorized types of reference for that user. The reference
monitor must satisfy three design criteria:

 1. It must be tamper proof.
 2. It must be always be invoked.
 3. It must be small enough to be subject to analysis and test, the

completeness of which can be assured.

A security kernel is the hardware, firmware, and software elements of a
trusted computing base that implement the reference monitor concept. It
must mediate all accesses, be protected from modification, and be verifiable
as correct.

12 OS/2 API Security Developers Guide

2.1.2 Security Policy
In the most general sense, computer security is concerned with controlling
the way in which a computer can be used, for example controlling how
information processed by it can be accessed and manipulated. A trusted
computer system that processes, stores, uses, or produces sensitive data
must, with reasonable dependability, prevent the following:

• Deliberate or inadvertent access to protected data by unauthorized
persons

• Unauthorized manipulation of the computer and its associated peripheral
devices

The computer system protection requirements of an organization must be
defined in terms of the perceived threats, risks, and goals of the
organization. An organization′s computer system security policy is a set of
laws, rules, and practices that regulate how the organization manages,
protects, and distributes sensitive information in its computer system(s).

A trusted computer system must satisfy the following security policy control
objective:

A statement of the intent with regard to control over access to and
dissemination of information, to be known as the security policy,
must be precisely defined and implemented for each system that is
used to protect sensitive information. The security policy must
accurately reflect the laws, regulations, and general policies from
which it is derived.

2.1.2.1 Discretionary Access Control
The term discretionary access control refers to a computer system′s ability
to control information on an individual basis. It stems from the requirement
that each individual′s access to information must be based on a
demonstrated need-to-know.

A trusted computer system must satisfy the following discretionary security
policy control objective:

Security policies defined for systems that are used to process
classified or other sensitive information must include provisions for
the enforcement of discretionary access control rules. That is, they
must include a consistent set of rules for controlling and limiting
access based on identified individuals who have been determined to
have a need-to-know for the information.

Chapter 2. Security Requirements 13

Discretionary access control is a means of restricting access to objects
based on the identity of subjects and/or groups to which they belong.
Controls are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to
any other subject.

Subject A subject is an active entity, generally in the form of a person,
process, or device that causes information to flow among objects
or changes the system state. Technically, a process/domain pair,
where a domain is defined as the set of objects that a subject has
the ability to access.

Object An object is a passive entity that contains or receives information.
Access to an object potentially implies access to the information it
contains. Examples of objects are: records, blocks, pages,
segments, files, directories, directory trees, and programs, as well
as bits, bytes, words, fields, processors, video displays, keyboard,
clocks, printers, network nodes, etc.

The trusted computing base defines and controls access between named
users and named objects (for example, files and programs) in the system.
The enforcement mechanism (for example, access control lists) shall allow
users to specify and control sharing of those objects, and shall provide
controls to limit propagation of access rights. The discretionary access
control mechanism, either by explicit user action or by default, provides that
objects are protected from unauthorized access. These access controls are
capable of specifying, for each named object, a list of named individuals and
a list of groups of named individuals with their respective modes of access to
that object. Furthermore, for each such named object, it is possible to
specify a list of named individuals and a list of groups of named individuals
for which no access to the object is given. Access permission to an object
by users not already possessing access permission is only assigned by
authorized users.

2.1.2.2 Object Reuse Protection
Object reuse is the reassignment of some subject to a storage medium (for
example, page frame, disk sector, magnetic tape, etc.) that contains one or
more objects. To be securely reassigned, such media must contain no
residual data from the previously contained objects. The object reuse
protection provided by the trusted computing base must remove residual
data from media when objects on the media are reused.

All authorizations to the information that is contained within a storage object
shall be revoked prior to initial assignment, allocation, or reallocation to a

14 OS/2 API Security Developers Guide

subject from the trusted computing bases pool of unused storage objects.
No information, including encrypted representations of information, produced
by a prior subject′s actions is to be available to any subject that obtains
access to an object that has been released back to the system.

2.1.2.3 Least Privilege Operation
Least privilege operation is the principle that requires each subject in a
system to be granted the most restrictive set of privileges needed for the
performance of authorized tasks. The application of this principle limits the
damage that can result from accident, error, or unauthorized use.

2.1.3 Accountability
Individual accountability is the key to securing and controlling any system
that processes information on behalf of individuals or groups of individuals.
The following requirements must be met in order to satisfy this objective:

 1. The first requirement is for individual user identification.

 2. Second, there is a need for authentication of the identification.
Identification is functionally dependent on authentication. Without
authentication, user identification has no credibility. Without a credible
identity, discretionary security policies cannot be properly invoked
because there is no assurance that proper authorizations can be made.

 3. The third requirement is for dependable audit capabilities. That is, a
trusted computer system must provide authorized personnel with the
ability to audit any action that can potentially cause access to, generation
of, or effect the release of sensitive information. The audit data will be
selectively acquired based on the auditing needs of a particular
installation and/or application. However, there must be sufficient
granularity in the audit data to support tracing the auditable events to a
specific individual who has taken the actions or on whose behalf the
actions were taken.

A trusted computer system must satisfy the following accountability control
objective:

Systems that are used to process or handle classified or other
sensitive information must assure individual accountability
whenever either a mandatory or discretionary security policy is
invoked. Furthermore, to assure accountability the capability must
exist for an authorized and competent agent to access and evaluate
accountability information by a secure means, within a reasonable
amount of time, and without undue difficulty.

Chapter 2. Security Requirements 15

2.1.3.1 Identification and Authentication
The trusted computing base requires users to identify themselves to it before
beginning to perform any other actions that the trusted computing base is
expected to mediate. Furthermore, the trusted computing base maintains
authentication data that includes information for verifying the identity of
individual users (for example, passwords) as well as information for
determining the security credentials of individual users (for example, group
membership, administrative roles). This data is used by the trusted
computing base to authenticate the user′s identity and to ensure that the
security credentials of subjects external to the trusted computing base that
may be created act on behalf of the individual user are dominated by the
security to credentials of that user.

The trusted computing base must guarantee that its identification and
authentication mechanisms cannot be circumvented by a user. The trusted
computing base protects authentication data so that it cannot be accessed by
any unauthorized user. The trusted computing base is able to enforce
individual accountability by providing the capability to uniquely identify each
individual system user. The trusted computing base shall also provide the
capability of associating this identity with all auditable actions taken by that
individual.

Trusted Path: A trusted path is a mechanism by which a person at a
terminal can communicate directly with the trusted computing base. This
mechanism can only be activated by the person or the trusted computing
base and cannot be imitated by untrusted software.

The trusted computing base supports a trusted communication path between
itself and users for use when a positive TCB-to-user connection is required
(for example, logon). Communications via this trusted path are activated
exclusively by a user or the trusted computing base and are logically
isolated and unmistakably distinguishable from other paths.

2.1.3.2 Audit
The trusted computing base is able to create, maintain, and protect from
modification or unauthorized access or destruction an audit trail of accesses
to the objects it protects. The audit data is presented by the trusted
computing base so that read access to it is limited to those who are
authorized for audit data. The trusted computing base is able to record the
following types of events: use of identification and authentication
mechanisms, introduction of objects into an user′s address space (such as
file open, program initiation), deletion of objects, actions taken by computer

16 OS/2 API Security Developers Guide

operators and system administrators and/or system security officers, and
other security relevant events.

For each recorded event, the audit record identifies: date and time of the
event, user, type of event, and success or failure of the event. For
identification/authentication events the origin of request (for example,
terminal ID) is included in the audit record. For events that introduce an
object into a user′s address space and for object deletion events the audit
record includes the name of the object. The system administrator is able to
selectively audit the actions of any one or more users based on individual
identity. The trusted computing base contains a mechanism that is able to
monitor the occurrence or accumulation of security auditable events that may
indicate an imminent violation of security policy. This mechanism is able to
immediately notify the security administrator when thresholds are exceeded
and, if the occurrence or accumulation of these security relevant events
continues, the system takes the least disruptive action to terminate the event.

2.1.4 Assurance
Assurance is concerned with guaranteeing or providing confidence that the
security policy has been implemented correctly and that the
protection-relevant elements of the system do, indeed, accurately mediate
and enforce the intent of that policy. By extension, assurance must include a
guarantee that the trusted elements of the system work only as intended.

A trusted computer system must satisfy the following assurance control
objective:

Systems that are used to process or handle classified or other
sensitive information must be designed to guarantee correct and
accurate interpretation of the security policy and must not distort the
intent of that policy. Assurance must be provided that correct
implementation and operation of the policy exists throughout the
system ′s life-cycle.

2.1.4.1 Operational Assurance
Operational assurance focuses on features and system architecture used to
ensure that the security policy is uncircumventably enforced during system
operation. That is, the security policy must be integrated into the hardware
and software protection features of the system. Examples of steps taken to
provide this kind of confidence include: methods for testing the operational
hardware and software for correct operation, isolation of protection-critical
code, and the use of hardware and software to provide distinct domains.

Chapter 2. Security Requirements 17

System Architecture: The trusted computing base maintains a domain for its
own execution that protects it from external interference or tampering (for
example, by modification of its code or data structures). The trusted
computing base maintains process isolation through the provision of distinct
address spaces under its control. The trusted computing base is internally
structured into well-defined modules. It makes effective use of available
hardware to separate those elements that are protection-critical from those
that are not. Trusted computing base modules are designed such that the
principle of least privilege operation is enforced. Features in hardware, such
as segmentation, are used to support logically distinct storage objects with
separate attributes (namely: readable, writeable). The user interface to the
trusted computing base is completely defined and all elements of the trusted
computing base identified. The trusted computing base is designed and
structured to use a complete, conceptually simple protection mechanism with
precisely defined semantics. This mechanism plays a central role in
enforcing the internal structuring of the trusted computing base and the
system. The trusted computing base incorporates significant use of layering,
abstraction and data hiding. Significant system engineering is directed
toward minimizing the complexity of the trusted computing base and
excluding from the trusted computing base modules that are not
protection-critical.

System Integrity: Hardware and/or software features are provided that can
be used to periodically validate the correct operation of the on-site hardware
and firmware elements of the trusted computing base.

Trusted Facility Management: The trusted computing base supports
separate operator and administrator functions. The functions performed in
the role of a security administrator are identified. The system administrative
personnel is only able to perform security administrator functions after taking
a distinct auditable action to assume the security administrator role on the
system. Non-security functions that can be performed in the security
administration role are limited strictly to those essential to performing the
security role effectively.

Trusted Recovery: Procedures and/or mechanisms are provided to assure
that, after a system failure or other discontinuity, recovery without a
protection compromise is obtained.

18 OS/2 API Security Developers Guide

Chapter 3. Security Enabling Services Overview

Before you can develop a security solution for OS/2, you must understand
the components of the OS/2 Security Enabling Services (SES). You must
understand how to exploit/modify Security Enabling Services components
and what kind of support is available for your applications.

The diagram shown in Figure 1 on page 20, provides a broad look at the
components of the OS/2 security enabling services. We will review each of
the sections in this diagram to determine the function that each component
provides in a secured environment and then we will be able to determine
how the components relate to each other.

 Copyright IBM Corp. 1996 19

Figure 1. Components of a Secured OS/2 Workstation

20 OS/2 API Security Developers Guide

3.1 Installable Security Subsystem (ISS)

The installable security subsystem is a set of components that provide
security features for a secured OS/2 operating system. This set of
components will vary depending on the security features required by the
customer, and may be developed by an independent software vendor, by
IBM, or by the customer themselves.

The following are services that may be included as part of an installable
security subsystem:

• User identification and authentication (logon)

• Resource access control

• Audit

• Security context and trusted program support

• Security policy administration tools

The components included in an installable security subsystem will depend on
the security features that are required by the customer.

3.2 Security Enabling Services

Security enabling services enables an installable security subsystem to
provide robust (C2 level) operating system security services (like RACF on
VM or MVS).

Chapter 3. Security Enabling Services Overview 21

3.2.1 Security Kernel Services

The security kernel services is responsible for the following:

• Routing security relevant operating system events (such as file system
access process creation) to an installable security subsystem to enable it
to enforce security policies on those events

• Providing operating system services for an installable security subsystem
security kernel that aren′ t normally available to a device driver running
at Ring-0 (such as file open, read, write, etc.)

3.2.2 Security Context Services

The security control services allow the following:

• An installable security subsystem to establish an association between a
process/thread and a subject handle, which the installable security
subsystem can associate with a user′s security credentials (such as user
identity and group membership)

• An installable security subsystem to provide trusted program support (for
example, a database application that can access the database file on
behalf of a user even though the user is not authorized to access the
database files directly)

• An installable security subsystem to provide concurrent multi-user
access to an OS/2 workstation (for example, one local user and multiple
remote TCP/IP users)

22 OS/2 API Security Developers Guide

3.2.3 Logon Shell Services

The logon shell services enables the following:

• Alternative authentication mechanisms (such as smart card, finger print,
etc.)

• The perception of a single signon by coordinating events that are
relevant to a logon session (such as logon, logoff, lock, and unlock) with
cooperating local and remote security components

3.2.4 Installation, Configuration, Initialization Support

The installation, configuration, initialization support enables the following:

• An installable security subsystem to provide secure installation,
configuration, and system initialization (boot) features

• An installable security subsystem to provide trusted recovery services if
the trusted computing base becomes corrupted

3.3 SES and ISS Communication
Communication between security enabling services and the installable
security subsystem is accomplished through the following handles and
programming interfaces:

Subject Handles: OS/2 is a multi-process user environment. Because of
this, it is necessary to have a method to associate users with the process or
threads they′ve started. This is accomplished in OS/2 by the use of subject
handles, where a subject may be defined as a user, group, or process.

Chapter 3. Security Enabling Services Overview 23

Subject handles associate user identifiers and other credentials with actively
running OS/2 processes. When a user logs onto the system, a unique handle
is created for the lifetime of the user′s session. This handle, is associated
with the user′s name and password. Any appropriately privileged program
can find the handle for a client process, and can in turn find the user name
and password of the client. Furthermore, other security dependent
applications running under OS/2 can associate their own notion of
credentials with a handle. For example, a LAN file server application could
associate LAN credentials with a user′s handle.

Security Context Inheritance: With OS/2 security enabling services, the
security context inheritance policy between parent and child processes is
deliberately flexible. It is up to the Installable Security Subsystem to
determine whether the child should inherit its parents authority.

The security enabling services system default inheritance policy is that child
processes are untrusted, therefore children do not inherit authority from the
parent process. In contrast, with the POSIX-compliant inheritance model, the
child process does inherit the security context of the parent process. With
OS/2, there is an option which may be specified to enable POSIX-compliant
inheritance on a per-process basis. There is not a system-wide definition for
this, it must be specified each time it is required otherwise the default
inheritance policy will apply, that is no inheritance of authority.

Programming Interfaces: Installable security subsystem applications need to
interact with predefined OS/2 services at an application and a kernel level.
OS/2 provides programming interfaces for the following:

• Application components (API)

• Kernel level components (KPI)

Through the application programming interface and the kernel programming
interface, an installable security subsystem can create, delete, reserve, and
examine handles for processes and threads, control processes, wait for
events, determine the order of execution for specific authorities, and receive
kernel level event information.

24 OS/2 API Security Developers Guide

3.3.1 Summary
OS/2 security is provided by an installable security subsystem, which takes
advantage of the security services provided by security enabling services.
The security elements required by an installable security subsystem will
inevitably depend on the features required by the market, but the minimum
set of components for any security subsystem would have to include the
following:

• A security kernel that would enforce security policies at the OS/2 kernel
level by interacting directly with the OS/2 kernel and security enabling
services security context services.

• A security daemon with user identification and system logon authorities.
The user identification authority would allow the identification and
authentication of local system users, whereas the system logon authority
would establish the security context for a local system logon.

Independent software vendors can create unique applications that provide
identification and authentication, discretionary access control, audit, single
signon, or trusted program functions for the OS/2 system. If required, these
applications can be granted multiple privileges.

An installable security subsystem can include dynamic link libraries to
replace/augment security enabling services policies. The system logon
driver and client logon driver dynamic link libraries determine the order in
which the user identification and client logon authorities are called by the
system. The password validation driver dynamic link libraries validates
password composition. The default security enabling services dynamic link
libraries (for example, system logon driver, client logon driver, password
logon driver) may be replaced by those supplied as part of an installable
security subsystem.

User credentials and handles are accessible to the installable security
subsystem. Programming interfaces, called APIs and KPIs are provided to
enable the installable security subsystem to invoke the OS/2 security
enabling services.

Chapter 3. Security Enabling Services Overview 25

26 OS/2 API Security Developers Guide

Chapter 4. Security Enabling Services

Only by utilizing the security enabling services of OS/2 can a truly robust
security system be developed for OS/2. In this chapter, we take a close look
at the security enabling services components, and how they interact with
both the OS/2 kernel and the installable security subsystem.

4.1 SES Overview

OS/2 security requirements originate from a wide variety of customer
environments ranging from the home and small office to large distributed
computing environments that include a variety of client and server platforms.

The only truly secure way of dealing with these requirements and that which
gives the customer the most choices is resource access control combined
with an open security architecture. The resource access control is where
security relevant events such as file open, print, connect to a COM port, are
intercepted right down within the operating system. It is only when the
operating system becomes involved that a true C2 level security system can
be developed.

With the realization of an open architecture, the freedom to exploit these
security services is given to independent software vendors and customers
alike, so robust, consistent (cross platform), security solutions can be
developed. With the development of the security enabling services interface
for OS/2, IBM has delivered a resource access control level of security
interface, combined with an open architecture.

The diagram in Figure 2 on page 28 illustrates the components that together
make up a secured OS/2 operating system.

 Copyright IBM Corp. 1996 27

Figure 2. SES - Key Components of the OS/2 Enabling Strategy

• Security Kernel Services (SKS)

This routes security relevant events to the installable security subsystem,
like file system access and process creation. It also provides operating
system services to the installable security subsystem, which would not
otherwise be available at Ring 0, such as file system access.

• Security Context Services (SCS)

This allows the installable security subsystem to associate a user′s
process, with that user′s security credentials (user ID, group
membership, trusted program privileges).

• Logon Shell Services (LSS)

In order to allow the perception of single signon to the user, the logon
shell services coordinates a number of components to log the user to the

28 OS/2 API Security Developers Guide

local security subsystem and to other local/remote services. The
authentication process can include the verification of smart cards, tokens,
etc.

• Installation, Configuration, Initialization Support (ICIS)

Secure installation, configuration, and initialization (boot) of an OS/2
system with security enabling services, an installable security subsystem,
and other security-related applications are handled by the installation,
configuration, initialization support component. This ensures the integrity
of the system at these critical times, while minimizing the impact on the
standard OS/2 installation, configuration and installation processes.

4.2 Security Kernel Services (SKS)

The security kernel services supports the installable security subsystem by
doing the following:

• Intercepting and routing security relevant OS/2 kernel events to the
installable security subsystem security kernel.

• Providing kernel level operating system services for the installable
security subsystem security kernel.

The diagram shown in Figure 3 on page 30, illustrates the concept of the
hooks and services that security kernel services provides for an installable
security subsystem, using the OS/2 file system services as an example.

Chapter 4. Security Enabling Services 29

Figure 3. SKS - Hooks and Services for the ISS Security Kernel

30 OS/2 API Security Developers Guide

4.2.1 Security Relevant Event Interception and Routing (Hooks)
The installable security subsystem security kernel device driver has to be
notified of security relevant events so that it can enforce access control and
audit policies. This is performed by hooks into the operating system so that
these events can be notified to the installable security subsystem and then
acted on appropriately. The events that can be hooked directly via the
security kernel services are:

• File access (open, read, write, close, change file pointer, delete, etc.)

• Directory access (make, remove)

• Load DLL module

• Execute program

• Callgate level support

• Multiple virtual DOS machine support

• Logon shell services trusted path support

• Security enabling services API audit support

4.2.2 Kernel Level Operating System Services
The installable security subsystem security kernel device driver runs at
Ring-0, but has to be able to invoke some OS/2 services that are normally
only available at Ring-3, such as file access for audit log updates. To
minimize the performance impact this would otherwise cause, the security
kernel services provides the following services to the installable security
subsystem security kernel:

• File system access (open, read, write, etc.)

• Security context services

4.3 Security Context Services (SCS)

The objective of security control services is to enable an installable security
subsystem (and other security applications) to provide robust security

Chapter 4. Security Enabling Services 31

services, including enforcement of a discretionary access control security
policy. A discretionary access control security policy is based on a model for
controlling access rights to objects based on the identity of subjects, where:

Object: Is defined as a passive entity (for example, file, device)
that contains or receives information. Access rights
(for example, read, write, execute) to an object implies
access rights to the information in the object for used
by the subject as specified by the access rights.

Subject: Is defined as an active entity (OS/2 process) executing
on behalf of a user/group. The subject is associated
with user/group/process credentials (for example, user
identification, group membership, trusted program
privileges, etc.).

Process: Is defined as a program in execution, characterized by
a single address space, execution state, and
associated security context.

Security Context: Is defined as the information maintained for each
process that enables security applications to associate
the subject (for example, process executing on behalf
of a user/group) with the appropriate
user/group/process credentials.

In an operating system that doesn′ t support multiple concurrent processes,
such as DOS and Windows, the single process is always acting on behalf of
the one-and-only local system user. No other users or processes can share
the system. However, even in a single process system, multiple concurrently
active security applications may need to maintain different definitions of
user/group/process credentials.

Figure 4. SCS - Single Process Model

32 OS/2 API Security Developers Guide

4.3.1 Process, Handle and Thread Models
In an operating system that supports multiple concurrent processes, such as
OS/2, the potential exists for these processes to be acting on behalf of
different concurrently active users (and/or trusted programs with their own
user/group/process credentials). And, again, multiple concurrently active
security applications may need to maintain different definitions of
user/group/process credentials.

In a single process operating system, it is possible for each security
application to maintain its own user/group/process credentials for the
one-and-only local system user without support from the operating system.
However, in a multiple process operating system, where processes (and the
associated security credentials) are dynamically created/terminated, the
security applications need operating system support to manage the security
credentials associated with each process.

To support dynamic management of user/group/process credentials
associated with subjects (processes executing on behalf of users/groups) for
multiple concurrently active security applications, security control services
associates each process with a subject handle (dynamically-generated
unique identifier) that each security application can associate with its own
definition of the user/group/process credentials.

Chapter 4. Security Enabling Services 33

Figure 5. SCS - Mult iple Process Model

34 OS/2 API Security Developers Guide

Figure 6. SCS - Subject Handle Model

To make the situation even more complicated, to support various trusted
program/process models (for example, POSIX setuid, setgid, umask), each
process potentially needs to be associated with the following sets of
user/group/process credentials:

• Client and agent user credentials (for example, POSIX uid) to enable a
trusted process to act on behalf of the real user who requested the
process services (client user) and the saved user associated with the
corresponding program (agent user).

• Client and agent group credentials (for example, POSIX gid) to enable a
trusted process to act on behalf of the real group of the user who
requested the process services (client group) and the saved group
associated with the corresponding program (agent group).

Chapter 4. Security Enabling Services 35

• Client and agent process credentials (for example POSIX umask and
distributed computing environment tickets) to enable a trusted server
process to act on behalf of a multiple clients (client process) and itself
(agent process).

Figure 7. SCS - Trusted Process Model

To support either a process model (where all threads of a process share the
same security context) or a thread model (where threads of a trusted
process are allowed to maintain different security contexts), each process
and each thread of a process potentially needs to be associated with
different sets of user/group/process credentials.

However, even for the thread model, all threads of a process are executing
the same program, and therefore have the same maximum security context

36 OS/2 API Security Developers Guide

(although the threads can have different effective security contexts). In
addition, an OS/2 process is represented by thread-1 (for example: if thread-1
dies, the process dies), so the effective security context of the process can
be represented by the effective security context of thread-1.

Security control services therefore maintains the following:

• One maximum security context for each process

• One effective security context for thread-1 (which represents the process)

• One effective security context for each additional thread if the thread
requests its own security context (that is, if it explicitly chooses a thread
model instead of the default process model)

Please note that the vast majority of processes are untrusted and,
consequently, all threads of the process will have the same effective security
context as the maximum security context of the process. Only threads of a
trusted process may have effective security contexts that are different from
the maximum security context of the process.

Chapter 4. Security Enabling Services 37

Figure 8. SCS - Thread Context Model

38 OS/2 API Security Developers Guide

4.3.2 Multiple Concurrently Active Security Applications
Security control services must enable the interoperation of multiple
concurrently active security applications. For example, a distributed
database manager could be installed on an OS/2 workstation that is secured
by an installable security subsystem. The database manager might need to
be able to start processes that can access files protected by the installable
security subsystem, and the installable security subsystem might need to be
able to create processes that can access records in the database protected
by the database manager.

To enable the interoperation of the installable security subsystem and other
security applications, security control services must do the following:

• Enable each security application to maintain its own definition of the
security credentials associated with a process/thread. This is
accomplished by associating each process/thread with a set of handles
that each security application can then associate with its own definition
of security credentials.

• Allow each security application to invoke the security enabling services
functions required to provide its security services (some security
enabling services functions can only be invoked by trusted security
applications). Trusted security applications are recognized by security
control services as having the authority to invoke privileged Security
Enabling Services functions by maintaining the authority status of the
security application in the security context of the trusted process. Each
special authority that a security application might need to invoke
privileged security enabling services functions is associated with an
authority flag in the security context of each process.

Note: Any process that has an authority flag set in its security context is
generically referred to as a security context authority. A process
with a specific authority flag set in its security context is referred
to by that flag name plus Authority, for example, System Logon
Authority (SLA), Access Control Authority (ACA), etc.

The services provided by security applications can be conceptually divided
into the following groups of functions that require special security enabling
services privileges (authority):

 1. Establishing the association between a user′s security credentials (for
example, user identifier, group membership, administrative privileges)
and the processes executing on behalf of the user. The first of these
requires the identification and authentication of the user, and then the

Chapter 4. Security Enabling Services 39

association of the user′s credentials with security context of the user′s
processes.

• System Logon Authority (SLA):

A process that has the authority to establish the process-user
association for the local system user. The local system user is
defined as the user who is associated with the OS/2 user interface
services, that is Presentation Manager and Workplace Shell
(PM/WPS).

• User Identification Authority (UIA):

A process that has the authority to identify and authenticate a user
for local system logon (the association of the user′s credentials with
the OS/2 PM/WPS user interface services is accomplished by the
system logon authority as described above).

• Remote Logon Authority (RLA):

A process that has the authority to establish the process-user
association for a user who is not the local system user, that is a
remote user who is accessing the local system through some
interface other than the OS/2 PM/WPS user interface services, for
example a user dialing in to the system through a TCP/IP connection.

Note: An Remote Logon Authority is also responsible for identifying
and authenticating remote users, that is user identification
authorities can only identify/authenticate users for local
system logon through the system logon authority.

 2. Enforcing resource access control and audit policies for processes
executing on behalf of a user. These policies may be enforced for local
objects/services and for remote objects/services.

• Access Control Authority (ACA):

A process that controls access to (typically local) resources/services
based on the security context established by a system logon
authority or remote logon authority.

• Client Logon Authority (CLA):

A process that controls access to (typically remote)
resources/services based on its own authentication of a user, for
example, Novell′s client services that provide access to remote
Novell servers. To enable the perception of single signon for the
local system user, the client logon authority can access the
authentication information (for example, user ID and password)
provided by the user during local system logon.

40 OS/2 API Security Developers Guide

 3. Providing services for a client process that require the agent or server
process to act on behalf of the client security credentials (in addition to
acting on behalf of the agent/server security credentials).

• Agent Process Authority (APA):

A process that can act on behalf of a client′s security credentials
and/or its own (typically more privileged) security credentials.

• Server Process Authority (SPA):

A process with threads that can act on behalf of multiple different
clients security credentials and/or its own (typically more privileged)
security credentials.

4.3.3 Multiple Concurrently Active Users
Security control services must enable multiple concurrently active users.
Although the primary target environment for OS/2 is the serial multi-user
workstation with a single local keyboard-mouse-display, support for multiple
concurrently active users is required in the following environments:

• Background (Detached) Program/Process

An installable security subsystem may want to allow some processes to
continue executing on behalf of one user (in the background) while
another user is logged on. For example, a print spooler could run as a
background process executing on behalf of one user at the same time
that another user is logged on.

• Trusted Program/Process

A trusted program/process can execute on behalf of a trusted user who
is not necessarily the user who invoked the program. For example, a
change password program can be invoked by an untrusted user but
could execute on behalf of the trusted user who has the authority to
update the password database.

• Multi-User Application Server

A multi-user application server can execute on behalf of multiple client
users through a client/server protocol. For example, a distributed
database manager, a file/print/application server, or a multi-user shell
that supports multiple user I/O streams (such as an X-Protocol I/O
application server).

The key design point for the multi-user support is associating each process
with the user on whose behalf the process is executing security control
services provides functions to associate a user (name) with a subject handle

Chapter 4. Security Enabling Services 41

and to associate a subject handle with a process. The following scenario
describes how security control services functions could be used by an
remote logon authority and an access control authority process to associate
a user′s credentials (for example, user identifier, group membership,
administrative privileges) with the user′s processes.

• The remote logon authority establishes an association between a user
(name) and a unique subject handle. When the user′s shell process is
initiated, the remote logon authority establishes the association between
the user′s subject handle and the user′s shell process. This association
is inherited by all child processes of the user′s shell process.

• When the remote logon authority establishes an association between a
user (name) and subject handle, the access control authority can be
notified of the association. The access control authority can then create
the appropriate user credentials to be associated with the handle.

• When the access control authority intercepts a request for access to a
protected object, the access control authority can retrieve the subject
handle associated with the requesting process and use the associated
user credentials to perform the access control check.

• When the last process referencing a subject handle is terminated, the
access control authority can be notified. The access control authority
can then delete the user credentials associated with the subject handle
because it won′ t be used again during this system boot.

4.3.4 Trusted Program/Process
A trusted process can be defined as a process that has the authority to act
on behalf of a user other than the user who invoked the process, that is the
process has the authority to transition from executing with the privileges of
one user to executing with the privileges of another user.

This privilege transition mechanism satisfies the following key requirements:

• A trusted process must be able to control access to private data. For
example, a database manager could be invoked by any client user to
update records in the database. The database manager might need to
be able to execute on behalf of the client user, but might also need to
execute on behalf of a trusted agent user that has the authority to update
the database files (even though the user who invoked the database
manager doesn ′ t have the authority to modify the database files directly).

• A trusted server process must be able to impersonate client processes.
For example, a multi-user application might need to be able to assume
the security context of its client processes so that when it accesses

42 OS/2 API Security Developers Guide

resources protected by an access control authority, the access control
authority will enforce the access control policies for the client′s
user/group/process credentials (not the server′s user/group/process
credentials).

Security control services enables an installable security subsystem to
implement trusted program support by associating each process/thread with
client and agent user handles. The effective user handle can be set equal to
either the client or agent user handle. In addition to supporting the
association of each process/thread with client/agent user handles, security
control services must also support the association of each process/thread
with client/agent group handles and with client/agent process handles. The
effective group/process handle can be set equal to either the client or agent
group/process handle. Two security context authority roles are defined to
satisfy the above requirements, without granting the trusted process
unlimited super user powers:

• Agent Process Authority (APA):

Enables a trusted process to execute on behalf of an untrusted client (for
example, the user who invoked the process) and a trusted agent (for
example, the owner of the trusted program).

• Server Process Authority (SPA):

Enables a trusted process to have multiple threads that execute on
behalf of different untrusted clients (who are not necessarily the user
who invoked the process) and a trusted agent (for example, the owner of
the trusted program).

4.4 Logon Shell Services (LSS)

A key requirement for security enabling services is to enable the perception
of a single signon in customer environments where user resources may be
stored on the user′s local workstation and may also be stored on a variety of
remote servers.

Chapter 4. Security Enabling Services 43

The local workstation resources may be protected by local workstation
security services that require identification and authentication identification
and authentication of the local workstation user, and each remote server
may be protected by the server′s security services that also require
identification and authentication of client users. Users want to be able to
enter their identification and authentication information (for example, name
and password) one time, and have this information accepted by all of the
local/remote identification and authentication mechanisms.

Logon shell services enables the perception of a local workstation user
logging on to multiple local/remote services through a single signon event.
Logon shell services accomplishes this by coordinating the interoperation of
the various security components that need to participate in the logon event
to perform identification and authentication of the local workstation user for
access to the following:

• Local PM/WPS user interface services

• Local workstation resources protected by the ISS

• Other local/remote resources protected by other security services

In addition to enabling the perception of a single signon event, logon shell
services enables the use of alternative authentication mechanisms (for
example, smart cards, etc.) and coordinates the interoperation of security
components for other events related to a logon session:

• Logoff, shutdown

• Lock, unlock

• Identification and authentication

• Change password, create user profile, delete user profile

Please note:

• Logon shell services does not provide generic single signon identification
and authentication services itself, logon shell services simply enables
cooperating components to work together to provide the perception of
single signon.

Security enabling services does not do the following:

− Support distributed computing environment or GSSAPI logon services

− Include any user registry/database

− Include any authentication mechanisms

− Include any services to synchronize user IDs, passwords, etc.

44 OS/2 API Security Developers Guide

− Include any facility to associate local users with security application
credentials, so there is no logon notebook or personal logon facility
to associate a local system user name with a remote server′s
domain/user ID

• Logon shell services does not provide generic logon services for multiple
local/remote users. Logon shell services only provides logon services
for the one and only local system user.

To emphasize this point:

− LSS functions can only be invoked for the local system user.

− LSS events depend on the state of the local system logon session.

− LSS event flows are integrated with PM/WPS services for the local
system user.

Logon shell services functions can only be invoked by a process that can
communicate with the local system user through PM/WPS user interface
services. Security components participating in logon shell services
events assume that they can communicate with the user who invoked a
logon shell services function via Presentation Manager services
(workplace shell may or may not be active depending on the state of an
event).

For example, a security component that needs to authenticate a user for
local system logon will most likely communicate with the user through
Presentation Manager services (for example, through a dialog box).
Consequently, logon shell services functions can only be invoked by a
process that can communicate with the user through PM/WPS services.
For example, a communications product that supports remote dial-in to
an OS/2 workstation cannot invoke logon shell services functions for the
remote user.

The following sections describe:

• The requirements of key security components that must cooperate to
provide single signon support for the local system user.

• The operational requirements for interaction between these key
components to provide an integrated state machine for events related to
the local system user′s logon session.

Chapter 4. Security Enabling Services 45

4.4.1 Overview of Key Logon Shell Services Components
Figure 9 identifies key security components that participate in LSS local
logon session events:

Figure 9. LSS - Coordination of Logon Session Events

46 OS/2 API Security Developers Guide

4.4.1.1 Logon Shell Services Policy DLLs
To enable the perception of single signon in environments where multiple
local/remote identification and authentication is required, these identification
and authentication services can be divided into the following major functions:

 1. Identification and authentication for access to resources on the local
system (local system logon)

 2. Identification and authentication for access to remote resources where
the server doesn′ t accept local system identification and authentication
(client logon)

 3. Administration of user authentication information (for example userid and
password)

The logon shell services policies for these functions are encapsulated in
DLLs that can be replaced by independent software vendor security products
or customers to satisfy specific security requirements.

System Logon Driver: The system logon driver defines/enforces the policy
for security enabling services interaction with user identification authorities
during a local system logon event (and other events related to a local system
logon session), so the system logon driver determines which user
identification authorities participate in identifying and authenticating a local
system (PM/WPS) user. The system logon driver is called by security
enabling services for the logon, unlock, identification and authentication,
change password, create user profile and delete user profile operations.

Note: The default policy for the system logon driver supplied with security
enabling services is to process the user identification authorities in
the order they appear in the SECURE.SYS file, and to stop when the
first user identification authority returns either success or failure (it
will only go on to the next user identification authority if the current
user identification authority returns an error condition).

Client Logon Driver: The client logon driver defines/enforces the policy for
security enabling services interaction with client logon authorities during a
local system logon event (and other events related to a local system logon
session), so the client logon driver determines which client logon authorities
participate in events related to a local system logon session. The client
logon driver is invoked by security enabling services for the logon, logoff,
lock, unlock, change password, create user profile and delete user profile
operations.

Note: The default policy for the client logon driver supplied with security
enabling services is to process all of the client logon authorities listed

Chapter 4. Security Enabling Services 47

in the SECURE.SYS file in the order they appear in the file. The return
code is ignored.

Password Validation Driver: The password validation driver defines/enforces
the policy for creating/changing a local system user′s password. The
password validation driver validates that a new password satisfies specified
rules (for example, minimum length, composition rules, dictionary check,
etc.). The password validation driveris invoked by security enabling services
for the change password and create user profile operations.

Note: The default policy for the password validation driver shipped with
security enabling services is to allow any password.

4.4.1.2 Logon Shell Services Event Daemons
An logon shell services event (for example local system logon) requires
cooperation between security enabling services (the SES daemon, PSS
daemon, SESShell daemon, and SES device driver) and the various security
components that must participate in the event. For example, for a logon
event, user identification authorities identify and authenticate the local
system user; the system logon authority establishes the security context for
the local system user; client logon authorities provide single signon services
for the local system user; and security enabling services coordinates the
whole event. To enable interaction between security enabling services and
the cooperating security components, each security component must provide
a daemon process that registers with security enabling services and waits to
respond to logon shell services events when invoked by logon shell services.
These daemon processes require special security enabling services
privileges to participate in logon shell services events.

Note: No special privilege is required to start logon shell services events.
For example, a smart card device could detect the insertion of a smart
card and start a local system logon event without any special
privileges. However, it would probably be better to include security
applications (such as a smart card device that could provide
identification and authentication for local workstation users) in the set
of cooperating logon shell services components so that they are
aware of the current state of the local system logon session and can
act accordingly (for example, logon versus unlock).

User Identification Authority: Logon shell services interacts with user
identification authorities to provide identification and authentication for the
local workstation user for the logon, unlock, and identification and
authentication events. Each user identification authority invoked returns the
status of its authentication attempt (for example, success, failure, error). The

48 OS/2 API Security Developers Guide

status from each user identification authority is processed by the system
logon driver and the final user authentication status is determined by the
system logon driver, which it returns to logon shell services.

System Logon Authority: Logon shell services interacts with the system
logon authority to apply its security policy for logon, logoff, lock, unlock, and
shutdown.

For logon and unlock, the system logon authority receives the final status
determined by the system logon driver (based on the results of the UIAs that
participated in the logon/unlock event). Given the results of the local
identification and authentication, the system logon authority can do one of
the following:

• Return a status to indicate that the logon/unlock event failed.

• Return a status to indicate that the logon/unlock event succeeded. If the
event is a logon, the system logon authority would create the local
security context for the user.

• Return a status to indicate a guest logon/unlock event. If the event is a
logon, the system logon authority would create the local security context
for the guest user.

For lock, logoff and shutdown events, the system logon authority first
receives a query event notification. The system logon authority may prompt
the user to confirm the event. The system logon authority may then cancel
the event or allow lock/logoff/shutdown to continue. The system logon
authority will, if the event was not cancelled, then receive a
lock/logoff/shutdown event notification. At this point, the system logon
authority will perform any processing required for the requested event, for
example with logoff, all processes that are running on the users behalf will
be terminated.

SLA One reason for the query logoff/shutdown event notification is to
give the system logon authority an opportunity to confirm that the
user wants to take this action before it′s gone too far. Also, for
the lock event, the system logon authority may not want a guest
user to lock the system.

Client Logon Authority: After local system logon/unlock, client logon
authorities are provided the name and password entered by the local user
during the local system logon/unlock event.

Note: The password is not permanently stored anywhere. It is maintained in
kernel memory during the local system logon session so that client

Chapter 4. Security Enabling Services 49

logon authorities may use it to provide the perception of single
signon.

If names/passwords are synchronized between the local and remote
systems, the client logon authority may be able to log the user on to the
appropriate remote services using the local name/password without any
further intervention by the user. If names/passwords are not synchronized,
the client logon authority will need to obtain the correct name/password from
the user.

Note: To expedite the logon process, client logon authorities should return
status to logon shell services as soon as possible (before actually
attempting to log the user on to a remote server). The intent is just to
notify the client logon authority of the local system logon so that it can
prepare to log the user on when needed (hopefully without any further
intervention by the user).

4.4.1.3 LSS Keyboard/Mouse Device Driver Support
Logon shell services provides a trusted path service that enables a user to
invoke the services of an installable security subsystem through a special
key combination (for example, Ctrl-Alt-Del) that cannot be intercepted by
applications. When the trusted path service is invoked, the installable
security subsystem can take control over keyboard/mouse input and can
ensure that the user′s input is routed directly to the installable security
subsystem.

When no local system user is logged on or the local system user interface
services (PM and WPS) are in a locked state, a logon or unlock event must
be initiated to start local system logon or to unlock the user interface
services.

• If the trusted path service is not configured, logon shell services has
control over the user keyboard/mouse input and initiates a logon/unlock
event when user activity (keystroke or mouse button) is detected.

• If the trusted path service is configured, logon shell services will not
initiate a logon/unlock event when user activity is detected. When a user
invokes the trusted path service, the installable security subsystem can
take control over keyboard/mouse input and can initiate a logon/unlock
event as appropriate.

• Whether the trusted path service is configured or not, user activity other
than keyboard/mouse input can be detected and a logon/unlock event
can be initiated by security applications. For example, a smart card

50 OS/2 API Security Developers Guide

reader could detect insertion of a smart card into the reader and initiate
a logon/unlock event.

In addition to detecting trusted path invocation or user activity, logon shell
services detects keyboard/mouse inactivity (keystroke or mouse button) to
automatically lock the user interface services after a specified time period.
This facility detects keyboard/mouse inactivity independent of the state of the
user interface services (without regard to what screen group is active, etc.).

4.4.2 Overview of Key LSS Operations
Logon shell services supports the integration of multiple cooperating security
components to handle local system logon session events (for example,
logon, logoff, lock, unlock, etc.). The local system logon session refers to the
time period between a successful logon event and a successful logoff event.
During a local system logon session, the security context established for the
local workstation user is associated with PM, the user shell (for example,
WPS), and all untrusted processes created on behalf of the local workstation
user. This security context will be referred to as the local system logon
session security context.

The requirement to support the integration of multiple cooperating security
components to handle local system logon session events involves a fairly
complex state machine. In addition, logon shell services supports the
following optional modes of operation:

• Trusted Path Support:

 1. Logon shell services monitors keyboard/mouse activity to initiate
logon/unlock events.

 2. Installable security subsystem trusted path services initiate
logon/unlock events (in lieu of logon shell services).

This optional mode of operation is specified by a CONFIG.SYS
environment variable: TRUSTEDPATH=NO|YES (default is NO).

• User shell process handling for logon/logoff:

 1. Let the user shell continue to execute between local system logon
sessions.

 2. Terminate/restart the user shell between local system logon
sessions.

This optional mode of operation is specified by a CONFIG.SYS
environment variable: RESTARTUSERSHELL=NO|YES (default is YES).

Chapter 4. Security Enabling Services 51

• Guest Logon Support:

 1. Requires user to explicitly initiate a guest logon event.

 2. Automatically starts a guest logon event (without explicit user action).

This optional mode of operation is specified by a CONFIG.SYS
environment variable: AUTOGUEST=NO|YES (default is NO).

To describe how the requirement to support these optional modes of
operation impacts the technical requirements for the logon shell services
state machine, we need to loosely define the following four key LSS local
system logon session states:

• Explicit Logon State

PM and the user shell process are active. PM and the user shell process
are associated with the security context of the user (either an
authenticated user or a guest user) for whom a local system logon event
was explicitly initiated (although the user doesn′ t necessarily need to
take an overt action to initiate logon).

For example:

− Logon shell services can initiate logon when keyboard/mouse activity
is detected.

− The installable security subsystem can initiate logon as part of its
trusted path services.

− A smart card device can initiate logon when a smart card is inserted.

Note that in this case, the system logon authority establishes the security
context for the local system logon session. The security context
associated with the local system logon session in the explicit logon state
will be referred to as the explicit logon state security context.

• Auto guest Logon State

PM and the user shell process are active. PM and the user shell process
are associated with the security context that is specified for the default
unauthenticated user as the result of logon shell services automatically
initiating an auto-guest logon event.

Note that in this case, the system logon authority does not establish the
security context for the local system logon session. The security context
associated with the local system logon session in the auto-guest logon
state will be referred to as the auto-guest logon state security context.

52 OS/2 API Security Developers Guide

• Lock State

PM and the user shell process are active, but the user interface services
(for example, keyboard, mouse, display) are not available until an unlock
event is initiated, that is keyboard/mouse input to applications is disabled
and the display is covered with a customer-specified bitmap.

Note that in this case, the security context associated with the local
system logon session is not changed from what was established during
the local system logon event. Consequently, the security context
associated with the local system logon session in the lock state is either
the explicit logon auto security context or the auto-guest logon state
security context.

• Logoff State

PM is active, the user shell may or may not be active (depending on the
mode of operation), and the user interface services are not available until
a logon event is initiated. PM and the user shell (if active) are
associated with the security context that is specified for this state.

Note that in this case, the system logon authority may optionally define a
security context for PM and the user shell (if active) when no local
system user is logged on. The security context associated with PM and
the user shell (if active) when no local system user is currently logged on
will be referred to as the logoff state security context.

The diagram in Figure 10 on page 54, shows a simplistic view of how the
logon shell services state machine transitions between these states as a
result of logon shell services events.

Chapter 4. Security Enabling Services 53

Figure 10. LSS - Overview of Logon Session Events

Please note there is no direct transition from the auto-guest logon state to
the explicit logon state (or vice-versa). To transition from one logon state to
another requires a logoff event followed by a logon event.

This may seem obvious, but it can cause some operational constraints that
are not necessarily obvious (or desirable). The same is true for transitions
between the logoff and lock states, that is direct transitions between these
two states are not supported.

4.4.2.1 Initialization
System initialization, including initialization of security enabling services and
security application components (for example, the installable security
subsystem), is discussed in detail in the installation, configuration,
initialization support architecture and system design sections.

54 OS/2 API Security Developers Guide

Here we cover an overview of initialization to show the impact of the optional
logon shell services modes of operation on system initialization
requirements. In this section we will view the sequence of events that are
undertaken for each setting.

• DEFAULT OPERATION (TrustedPath=No, RestartUserShell=Yes,
AutoGuest=No)

 1. The security enabling services device driver and installable security
subsystem security kernel (device driver) are loaded and initialized.

 2. The SES daemon is started.

 3. The SESShell daemon is started, which initializes PM.

Note: The SESShell daemon is the PM process.

 4. The PSS daemon is started.

 5. The SESShell daemon starts the security application daemons (for
example: SLA, UIA, CLA) if configured.

 6. The initialization process is suspended until the system logon
authority registers with security enabling services (and optionally
specifies a logoff state security context). When the system logon
authority registers with security enabling services, the initialization
process is allowed to continue.

 7. The logon shell services state machine ends up in the logoff state,
the user shell is not active and the user interface services are not
available until a logon event is initiated.

• TRUSTEDPATH=YES

System initialization is not affected by this option.

• RESTARTUSERSHELL=NO

The user shell (for example: WPS) will be started during initialization,
after security enabling services, installable security subsystem, PM,
system logon authority are ready, but before a logon event. Relating this
to our default operation listed earlier, we see:

 1. No change.

 2. No change.

 3. No change.

 4. No change.

 5. No change.

 6. No change.

Chapter 4. Security Enabling Services 55

 7. Logon shell services starts the user shell.

 8. The logon shell services state machine ends up in the logoff state,
the user shell is active, but the user interface services are not
available until a logon event is initiated.

• AUTOGUEST=YES

An auto-guest logon event will be initiated as the last step of
initialization. Relating this to our default operation listed earlier, we see:

 1. No change.

 2. No change.

 3. No change.

 4. No change.

 5. No change.

 6. No change.

 7. Logon shell services starts the user shell if
RESTARTUSERSHELL=NO.

 8. Logon shell services initiates an auto-guest logon event (see next
section for overview of logon).

 9. If the logon event is successful, the logon shell services state
machine ends up in the auto-guest logon state.

Note: If the logon event is not successful, logon shell services ends
up in the logoff state.

4.4.2.2 Logon/Logoff
Logon/logoff overview to show the impact of the optional logon shell services
modes of operation on LSS state machine requirements.

• DEFAULT OPERATION (TrustedPath=No, RestartUserShell=Yes,
AutoGuest=No)

Logon:

 1. When the logon shell services state machine is in the logoff state and
the user shell is not active, logon shell services detects
keyboard/mouse activity and initiates an explicit logon event.

 2. The client logon authorities are invoked (as determined by the
system logon driver) to authenticate the local system user.

 3. The system logon authority is invoked to establish a security context
for the local system user.

56 OS/2 API Security Developers Guide

 4. If the logon event is continued by the system logon authority, the
client logon authorities are invoked (as determined by the client
logon driver) to provide single signon services and the user shell is
started.

Note: If the logon event is not continued by the system logon
authority, logon shell services returns to the logoff state.

 5. The logon shell services state machine ends up in the explicit logon
state.

Logoff:

 1. When the logon shell services state machine is in the explicit logon
state, a logoff event is initiated.

 2. The system logon authority is invoked to determine whether the local
system user wants to continue with the logoff event or not.

 3. If the logoff event is continued by the system logon authority, the
client logon authorities are invoked (as determined by the client
logon driver) to provide single signon services and the user shell is
terminated.

Note: If the logoff event is not continued by the system logon
authority, logon shell services returns to the explicit logon
state.

 4. The logon shell services state machine ends up in the logoff state.

• TRUSTEDPATH=YES

Logon shell services will not initiate an explicit logon event when
keyboard/mouse activity is detected while in the logoff state (the
assumption being that the installable security subsystem trusted path
services will initiate an explicit logon event as a result of trusted path
invocation).

Logon:

 1. When the logon shell services state machine is in the logoff state and
the user shell is not active, logon shell services ignores
keyboard/mouse activity. However, a trusted path invocation is
detected and the installable security subsystem trusted path services
initiate an explicit logon event.

 2. No change.

 3. No change.

 4. No change.

Chapter 4. Security Enabling Services 57

 5. No change.

The logoff operation is not affected by this option.

• RESTARTUSERSHELL=NO

Logon shell services will not terminate/restart the user shell between
logoff/logon events.

Logon:

 1. When the logon shell services state machine is in the logoff state and
the user shell is active, an explicit logon event is initiated.

 2. No change.

 3. No change.

 4. If the logon event is continued by the system logon authority, the
client logon authorities are invoked (as determined by the client
logon driver) to provide single signon services. The user shell is
already active.

Note: If the logon event is not continued by the system logon
authority, logon shell services returns to the logoff state.

 5. No change.

Logoff:

 1. No change.

 2. No change.

 3. If the logoff event is continued by the system logon authority, the
client logon authorities are invoked (as determined by the client
logon driver) to provide single signon services. The user shell is not
terminated.

Note: If the logoff event is not continued by the system logon
authority, logon shell services returns to the explicit logon
state.

 4. No change.

• AUTOGUEST=YES

Logon shell services will automatically start an auto-guest logon event
(without explicit user action) whenever the logon shell services state
machine is in a logoff state, with one key exception to allow a user to
explicitly logon (either as an authenticated user or as an explicit guest
user) when the logon shell services state machine is in the auto-guest
logon state.

58 OS/2 API Security Developers Guide

With this option, the logon shell services state machine is essentially
always in a logon state (either auto-guest or explicit), except for the brief
time between logon states while logon shell services transitions through
the logoff state. Consequently, when a user wants to explicitly logon, a
logoff event must be processed first.

To make this as painless as possible for the installable security
subsystem, logon shell services handles the auto-guest logon state a
little differently than the explicit logon state:

− Logon shell services allows an explicit logon event to be initiated
while the logon shell services state machine is in the auto-guest
logon state, and automatically initiates an implicit logoff event before
proceeding with the explicit logon event.

Note: When the logon shell services state machine is in the
auto-guest logon state, the installable security subsystem
should provide a convenient user interface for the auto-guest
user to initiate an explicit logon (for example when adding a
logon icon to the desktop or adding a logon menu item to the
desktop context menu).

− Logon shell services doesn′ t allow a logoff event while the logon
shell services state machine is in the auto-guest logon state (since
logon shell services would immediately start an auto-guest logon and
return to auto-guest logon state), except for the implicit logoff
initiated by logon shell services for an explicit logon.

Note: When the logon shell services state machine is in the
auto-guest logon state, the installable security subsystem
should not provide a user interface for the auto-guest user to
initiate a logoff.

Logon:

 1. When the logon shell services state machine is in the auto-guest
logon state, an explicit logon event is initiated.

a. Logon shell services suspends the explicit logon event and
initiates a logoff event.

b. When the logoff event is completed, logon shell services allows
the explicit logon event to continue.

 2. No change.

 3. No change.

 4. If the logon event is continued by the system logon authority, the
client logon authorities are invoked (as determined by the client

Chapter 4. Security Enabling Services 59

logon driver) to provide single signon services. The user shell may
already be active or may be started at this time, depending on the
RESTARTUSERSHELL option.

Note: If the logon event is not continued by the system logon
authority, logon shell services goes to the logoff state.
However, an auto-guest logon is initiated immediately, so the
logon shell services state machine ends up in the auto-guest
logon state.

 5. The logon shell services state machine ends up in the explicit logon
state.

Logoff:

 1. No change.

 2. No change.

 3. If the logoff event is continued by the system logon authority, the
client logon authorities are invoked (as determined by the client
logon driver) to provide single signon services. The user shell may
or may not be terminated, depending on the RESTARTUSERSHELL
option.

Note: If the logoff event is not continued by the system logon
authority, logon shell services returns to the explicit logon
state.

 4. The logon shell services state machine goes to the logoff state,
however, an auto-guest logon is initiated immediately, so the logon
shell services state machine ends up in the auto-guest logon state.

4.4.2.3 Lock/Unlock
Lock/unlock overview to show the impact of the optional logon shell services
modes of operation on logon shell services state machine requirements.

• DEFAULT OPERATION (TrustedPath=No, RestartUserShell=Yes,
AutoGuest=No)

Lock:

 1. When the logon shell services state machine is in a logon state
(auto-guest or explicit), a lock event is initiated.

 2. The system logon authority is invoked to determine whether the local
system user wants to continue with the lock event or not.

60 OS/2 API Security Developers Guide

 3. If the lock event is continued by the system logon authority, the client
logon authorities are invoked (as determined by the &cld) to provide
single signon services.

Note: If the lock event is not continued by the system logon
authority, logon shell services returns to the logon state.

 4. The logon shell services state machine ends up in the lock state.

Unlock:

 1. When the logon shell services state machine is in the lock state,
logon shell services detects keyboard/mouse activity and initiates an
unlock event.

 2. The user identification authorities are invoked (as determined by the
system logon driver) to re-authenticate the local system user.

Note: During the processing of an unlock event for a guest user
(either auto-guest logon or explicit guest user logon), the
unlock event cannot require authentication; however, the lock
event can be used as a screen saver function for guest users.

 3. The system logon authority is invoked to re-establish the security
context for the local system user.

 4. If the unlock event is continued by the system logon authority, the
client logon authorities are invoked (as determined by the client
logon driver) to provide single signon services.

Note: If the unlock event is not continued by the system logon
authority, logon shell services returns to the lock state.

 5. The logon shell services state machine ends up in a logon state
(auto-guest or explicit).

• TRUSTEDPATH=YES

Logon shell services will not initiate an unlock event when
keyboard/mouse activity is detected while in the lock state (the
assumption being that the installable security subsystem trusted path
services will initiate an unlock event as a result of trusted path
invocation).

The lock operation is not affected by this option. Unlock:

 1. When the logon shell services state machine is in the lock state,
logon shell services ignores keyboard/mouse activity. However, a
trusted path invocation is detected and the installable security
subsystem trusted path services initiate an unlock event.

Chapter 4. Security Enabling Services 61

 2. No change.

 3. No change.

 4. No change.

 5. No change.

• RESTARTUSERSHELL

The lock/unlock operations are not affected by this option.

• AUTOGUEST The lock/unlock operations are not affected by this option.

4.5 Installation, Configuration and Initialization Support (ICIS)

The installation, configuration, initialization support support for security
enabling services with OS/2 Version 2.11 and OS/2 Warp Version 3.00 is very
straight forward:

• Installation

The security enabling services component for OS/2 Version 2.11 and
OS/2 Warp Version 3.00 is distributed as part of the OS/2 service stream,
and is available as follows:

− OS/2 Version 2.11 - fixpak XR_BSES.

− OS/2 Warp Version 3.00 - SECURITY.BBS

Because some of the OS/2 components have been modified to provide
enhancements to support security enabling services, a pre-requisite
fixpak level will be required for some releases of OS/2. The pre-requisite
information is listed below:

− OS/2 Version 2.11 - fixpak XR_B100 or higher

− OS/2 Warp Version 3.00 - fixpak XR_W016 or higher

These fixpaks contain the first level of code to include the necessary
security enabling services support modifications to the OS/2 base code.
These modification are also included in later levels of the OS/2 code.

62 OS/2 API Security Developers Guide

The security enabling services installation process simply copies the
necessary files to the appropriate drive/directories. No modifications to
CONFIG.SYS to enable security enabling services are made during the
security enabling services installation process. When a customer installs
a security product that requires security enabling services, the installable
security subsystem installation process will make the appropriate
modifications to CONFIG.SYS (and SECURE.SYS) to enable security
enabling services features.

• Configuration

All security enabling services configuration is accomplished by modifying
the CONFIG.SYS and SECURE.SYS files. No GUI or APIs are provided for
configuration.

• Initialization

independent software vendor security products typically provide boot
protection which ensure continuous protection prior to OS/2 initialization.
However, during OS/2 initialization (prior to the installable security
subsystem being able to enforce its security policy), OS/2 ensures that
the system is protected from unauthorized intervention. There are the
following three phases of the initialization process that must be
considered:

 1. Prior to processing of CONFIG.SYS, the user can interrupt
initialization by typing ALT-F1, the installable security subsystem
must be able to ensure that this interruption cannot be used to
circumvent its security policies.

 2. During processing of CONFIG.SYS, security enabling services and
installable security subsystem components must be loaded and
functional prior to allowing a user to logon. If not, the installable
security subsystem must be able to cause a default state where only
an authorized administrator can intervene.

 3. During processing of SECURE.SYS, security enabling services
ensures that security applications are assigned authorized privileges
and that no applications are assigned unauthorized privileges.

When OS/2 security is installed for Warp, a file called ALTF1SEC.CM is
placed in the \OS2\BOOT directory. The independent software vendor
product should rename this file to ALTF1SEC.CMD (or provide their own cmd
file with the same name).

If ALT-F1 is to be disabled, it is possible to have a one line .CMD file with just
an EXIT statement. When security is installed and a user hits ALT-F1, the

Chapter 4. Security Enabling Services 63

system will execute whatever is in ALTF1SEC.CMD, so the independent
software vendors should be sure to protect this file.

64 OS/2 API Security Developers Guide

Chapter 5. Installable Security Subsystem

An installable security subsystem is a set of components that provides the
security features for a secured OS/2 system. In this chapter we discuss the
relationship between security enabling services, an installable security
subsystem and the security dependant applications that must work together
in a secured OS/2 workstation. The diagram in Figure 11 on page 66
illustrates this relationship.

 Copyright IBM Corp. 1996 65

Figure 11. ISS - Overview of a Secured OS/2 System

5.1 What Is an Installable Security Subsystem?
An installable security subsystem is a set of components that provides the
security features for a secured OS/2 system. An installable security
subsystem may contain components that perform or support identification
and authentication (such as password checking), DAC (such as file access
control), system audit, single signon, trusted program support.

66 OS/2 API Security Developers Guide

5.2 What Are the Typical Components of an ISS?
The components of an installable security subsystem will vary, depending
upon the security features that the independent software vendor needs to
add to the OS/2 system to satisfy the customer set. An installable security
subsystem may include the components depicted in the diagram in
Figure 12.

Figure 12. ISS - Components

Chapter 5. Installable Security Subsystem 67

We should take a closer look at the following components of an installable
security subsystem (ISS).

• Security daemons and applications

The application level components of an installable security subsystem
are what the customers see. This is the user interface and/or application
program interface. By exploiting the security enabling services trusted
process support, much of the logic required to implement installable
security subsystem security features can be built as trusted installable
security subsystem applications.

Note: From an OS/2 customer′s point of view, there is no distinction
between a security daemon and a security application, both are a
set of one or more software programs/components that provide a
service to the customer.

The security enabling services definition of a security daemon is
an application/program that executes as a trusted process with
special SES privileges and interacts with security enabling
services via a captive thread that is blocked in the security
enabling services device driver until security enabling services
need the security daemon to respond to a security relevant event.

The installable security subsystem security daemons and applications
may need special security enabling services privileges to perform their
responsibilities. Table 1 shows which privileges might be applicable to
the various services provided by an installable security subsystem.

Table 1. Suggested Mapping of SES Privi leges to ISS Functions

• Security kernel (device driver)

The function of the security kernel is to permit the installable security
subsystem to establish communication with the OS/2 kernel. This
enables the installable security subsystem to receive security event

Privileged ISS Daemon/Application ISS service

Access Control Authority (ACA) Resource Access Control

Agent Process Authority (APA) Trusted Program Support

Client Logon Authority (CLA) Client/Server Support

Remote Logon Authority (RLA) Client/Server Support

System Logon Authority (SLA) Local System Logon

Server Process Authority (SPA) Trusted Program Support

User Identification Authority (UIA) Identification and authentication

68 OS/2 API Security Developers Guide

information from the kernel. Without a security kernel (implemented as
an OS/2 device driver), an installable security subsystem cannot enforce
its security policy on OS/2 kernel operations.

Typical OS/2 kernel operations include file actions such as open, read,
write, close, change file pointer, delete, process creation. These actions
are referred to as security events. Notification of the occurrence of
selected security events is sent from the OS/2 kernel to the ISS security
kernel, if the installable security subsystem has indicated that it wishes
to receive the notification.

• Dynamic link libraries

Three special DLLs are defined in the OS/2 security enabling services.
Each has a well defined function in the processing of security events and
each provides a default policy for processing security events. These
DLLs, and the corresponding policy for processing security events, can
be replaced by installable security subsystem DLLs:

− System Logon Driver (SLD)

The system logon driver determines the order in which user
identification authorities are invoked during logon.

− Client Logon Driver (CLD)

The client logon driver determines the order in which client logon
authorities are invoked during logon.

− Password Validation Driver (PVD)

The password validation driver verifies that a password issued during
a change password request satisfies specified rules (composition,
history, dictionary, etc.).

In addition, the installable security subsystem can provide its own APIs,
with which a security dependent application can invoke the security
functions provided by the installable security subsystem This is an
optional component of an installable security subsystem.

A trusted application is an external security component which depends
upon the security services provided by the secure OS/2 operating
system. It won′ t necessarily have been developed by the independent
software vendor who developed the installable security subsystem, but it
may need to use services provided by the installable security subsystem.
Access to these services is provided through the APIs supplied with the
installable security subsystem.

Why would an installable security subsystem want to provide APIs? By
providing an API, a customer can develop security dependent

Chapter 5. Installable Security Subsystem 69

applications that can invoke the security services provided by the
installable security subsystem. This adds significant value to an
installable security subsystem for many large OS/2 customers.

5.3 What Support Does SES Provide for an ISS?
Security enabling services provides an operational environment for the
installable security subsystem with well defined security services and
support.

5.3.1 Security Context
Security enabling services maintains a security context for each OS/2
process/thread. The security context contains subject handles that are
associated with user/group/process credentials and information about
privileges and status of the process/thread. The important point to note here
is that each process/thread is associated with a security context that denotes
its privileges, status, credentials, etc.

The following are several ways the security context of a process/thread can
be established/changed:

• Inherited from its parent process
• Specified as having special SES privileges
• Established by trusted components with appropriate SES privileges
• Modified through SES APIs
• Established by an ISS during system logon

Note: System logon is defined as associating a user′s security context
with the OS/2 user interface services (Presentation Manager and
Workplace Shell).

5.3.2 Privileges and Authorities
A process that is active under OS/2 may be granted a specified set of
security enabling services privileges. These privileges control the execution
environment of the process and determine what security enabling services
functions the process may access. Each privilege is defined by a separate
flag in the process/thread security context, it is referred to as the security
context authority (or authority for short). A program/process/thread that has
one or more of these privileges is referred to as a security context authority.

Since the processes are identified by the authority roles they may assume,
they are often referred to by the name of the authority. For example, a
process that has assumed the role of access control may be referred to as

70 OS/2 API Security Developers Guide

an access control authority. Processes may assume multiple authority roles,
depending upon the functions they need to perform. The roles are assigned
during system initialization, in response to information the independent
software vendor adds to a system file named SECURE.SYS.

5.3.2.1 ACA, SLA and UIA
The ACA/SLA/UIA roles are defined primarily to support local workstation
security services.

• Access Control Authority (ACA)

An access control authority establishes the rules for access to protected
objects. It is invoked each time an initial access request is made. It
must have access to the credentials of the requester and the access
conditions for each protected object.

This is a means of implementing discretionary access control in OS/2.
For example, an installable security subsystem may contain an access
control authority which controls access to selected system files. The
rules contained within the access control authority would control
requester access based upon the user′s credentials and the access
control established for the file. The access control could be implemented
in the form of an access control list and could restrict access to the file
for a single user or a group of users.

The specific privilege defined for an access control authority is the right
to register for notification of subject handle creation and deletion.

• System Logon Authority (SLA)

An system logon authority determines whether or not a user should be
allowed to log on to the local system and helps create the credentials
that associate the user with the local system logon environment. An
installable security subsystem may define/manage the
user/group/process credentials that are associated with the process
security context (for example, set of subject handles, security context
authority flags, and related status information). The system logon
authority can associate the user with the processes executing for that
user.

The minimum set of authorities that an installable security subsystem
should have are user identification authority and system logon authority.
With these authorities, an installable security subsystem can grant a user
access to the OS/2 system (associate the user′s credentials with the
user ′s system logon session), and can grant access to authorized
workstation resources. Note that the installable security subsystem

Chapter 5. Installable Security Subsystem 71

security daemon can be both a user identification authority and a system
logon authority.

• User Identification Authority (UIA)

A user identification authority performs identification and authentication
for users logging onto the system. The user identification authority takes
the user logon information as input, and returns a status of
user-authenticated or user-not-authenticated (or other error return codes)
to security enabling services. An installable security subsystem should
provide at least one authentication mechanism and corresponding user
identification authority.

Note that there may be multiple user identification authorities in a
system, depending upon a customer′s needs. For example, a system
that uses two forms of identification and authentication, such as a
password and a smart card, might use two different user identification
authorities to perform the identification and authentication. The order in
which the user identification authorities are invoked to authenticate the
user is defined in the system logon driver.

5.3.2.2 APA and SPA
The agent process authority and server process authority roles are defined
for trusted program support, again primarily for local workstation security
services.

• Agent Process Authority (APA)

An agent process authority executes on behalf of a client user (who may
be untrusted) and a trusted agent. When an agent process authority
program is invoked by a user, the agent process authority swaps the
user ′s set of security privileges (called the security context) for the user′s
process to a set of security privileges which can perform a security
sensitive operation. When the requested operation is completed, the
agent process authority is terminated.

• Server Process Authority (SPA)

A server process authority executes on behalf of multiple client users
and a trusted agent. A server process authority maintains one or more
threads that run with the user′s security context rather than the server
process authorities. Each time a different user request is processed, the
requester ′s security context is used to determine access rights.

Agent process authority and server process authority are provided in order
to allow a program the capability of being able to transition from executing
with the privileges of one user, to executing with the privileges of another

72 OS/2 API Security Developers Guide

(pseudo) user. This allows a trusted program to execute on behalf of an
untrusted client under certain controlled conditions. For example, a DBMS
program might need to be accessible and process transactions on behalf of
trusted and untrusted clients.

Figure 13. ISS - APA and SPA

Chapter 5. Installable Security Subsystem 73

5.3.2.3 Remote Logon and Client Logon Authorities
The remote logon authority and client logon authority roles are defined
primarily to support distributed (client/server) computing environment
security services.

• Remote Logon Authority (RLA)

Remote logon authority provides process-user association for remote
system users and local system processes. For example, a remote user
who wishes to log on to a local machine (perhaps through Telnet), would
be authenticated to the local system by a remote logon authority. The
functions of a system logon authority and a remote logon authority are
similar. The actual association of the user with the processes executing
for the user is performed by an remote logon authority for remote users.

• Client Logon Authority (CLA)

A client logon authority authenticates the local user onto a remote
system. A client logon authority gathers up whatever information is
necessary and propagates it to some remote node/server for
authentication. If the remote authentication fails, the user may still be
locally authenticated. Depending upon the installable security subsystem
application, a client logon authority could also have user identification
authority authority. There may be multiple client logon authorities in a
system; the client logon driver determines the order in which they are
called.

A client logon authority is not needed on a stand-alone workstation, but
should be present on client workstations in a client/server environment
to facilitate the perception of single signon during the local system logon
process.

5.3.2.4 Interoperation of Security Context Authorities
How do the security context authorities (UIA, SLA, CLA, RLA, ACA) work
together? Consider what happens when a user initiates a logon request.

74 OS/2 API Security Developers Guide

Figure 14. ISS - Interoperation of Security Context Authorit ies

After the logon request is made by the user, the system logon driver is
queried to determine the order in which to notify system user identification
authorities. The user identification authority obtains the user name and
password (any identification and authentication mechanism could be used),
and performs authentication of the user. The information is passed back to
the system, and the system logon authority is notified of the logon attempt.
The system logon authority applies the logon policy that has been defined by
the independent software vendor, and determines if system logon is to be
performed. If it is, security enabling services creates the security context (as
defined by the system logon authority) to associate with the user′s
credentials for the local system logon environment (typically PM and WPS).

The client logon driver is queried to determine the order in which to call
client logon authorities. The appropriate client logon authority obtains the
user logon information and propagates it to a remote resource for
authentication and subsequent access to the remote resources. If
authentication is successful, the user obtains access to the remote services.

The remote logon authority receives a request to logon from a remote
server, and performs authentication as needed. If authentication is
successful, security enabling services creates the security context (as

Chapter 5. Installable Security Subsystem 75

specified by the remote logon authority) to associate the user′s credentials
with the process tree(s) created for the user by the remote logon authority.
When an access control authority receives a request for access to protected
resources from one of these processes, the access control authority can
query the security context for the requesting process and apply the
appropriate access control policy.

For example, if we look at a user performing a local logon but also making
use of the single signon facility, the logic flow would be similar to this:

System Logon Driver (SLD)
|
v

User Identification Authority (UIA)
|
v

System Logon Authority (SLA)
|
v

Client Logon Driver (CLD)
|
v

Client Logon Authority (CLA)
|
v

Remote Logon Authority (RLA)
|
v

Access Control Authority (ACA)

5.3.3 Programming Interfaces
Installable security subsystem applications must interact with predefined
OS/2 services at an application and a kernel level. OS/2 provides
programming interfaces for application (API) and kernel (KPI) level
components. The API provides security developers a means to create
security applications; the KPI provides security developers a means to create
installable security subsystem device drivers. For example, the installable
security subsystem security kernel (device driver) communicates through
defined KPIs to the kernel level security enabling services:

76 OS/2 API Security Developers Guide

Figure 15. ISS - Kernel Programming Interface

Through the APIs and the KPIs, an installable security subsystem can create,
delete, reserve, and examine handles for processes and threads, control
processes, wait for events, determine the order of execution for specific
authorities, and receive kernel level event information. APIs are made
available to independent software vendors as dynamic link libraries, which
are loaded into the installable security subsystem through C language calls.

5.4 Installable Security Subsystem Summary
OS/2 security is provided by an installable security subsystem, building on
the services provided by OS/2 security enabling services. The minimum set
of components necessary for an installable security subsystem depends upon
the services provided by the installable security subsystem, but would
typically include the following:

Chapter 5. Installable Security Subsystem 77

• A security kernel (to enforce security policies at the OS/2 kernel level by
interacting directly with the OS/2 kernel and security enabling services
security context services).

• A security daemon with user identification authority and system logon
authority privileges (user identification authority to identify and
authenticate local system users, system logon authority to establish the
security context for local system logon), perhaps also with access control
authority privileges (for notification of subject handle creation/deletion).

Independent software vendors can create unique applications that provide
identification and authentication, discretionary access control, audit, single
signon, or trusted program functions for the OS/2 system. These applications
can be granted a defined set of privileges (ACA, SLA, UIA, RLA, CLA, SPA
and APA). An application may be granted multiple privileges.

An installable security subsystem can include DLLs to replace/augment
security enabling services policies. The system logon driver and client logon
driver DLLs determine the order in which user identification authorities and
cleint logon authorities are called by the system. The password validation
driver DLL validates password composition. The default security enabling
services DLLs (SLD, CLD and PVD) may be replaced by an installable
security subsystem.

User credentials and handles are accessible to the installable security
subsystem. Programming interfaces, called APIs and KPIs are provided to
enable the installable security subsystem to invoke the OS/2 security
enabling services.

78 OS/2 API Security Developers Guide

Part 2. Design Notes

 Copyright IBM Corp. 1996 79

80 OS/2 API Security Developers Guide

Chapter 6. Introduction to SES Development

About This Part

Part 1, “Developer′s Guide” on page 1 provides some background
information and introduces terminology that would help make reading this
part of the document a little easier:

• Overview of the OS/2 security enabling strategy

• Definition of operating system security

• Description of C2 security requirements

• Role of SES in a secured OS/2 workstation

This section describes the requirements that influence the design of
security enabling services, discusses the overall security enabling
services architecture and key components, and explains the high-level
system design for security enabling services features.

• Architecture

Discusses key security enabling services components, the interaction
among these components, and key design concepts.

• System Design

Provides an overview of the security enabling services design,
including the general flow of control/data for security enabling
services functions and scenarios describing the intended use of the
functions.

• Building Blocks

Describes the application/kernel programming interfaces, trusted
program privileges, and dynamic link libraries that are applicable to
various security features.

• Design Guidelines

Contains an action list to use when building an installable security
subsystem and information on what a developer should produce.

• Programming Interfaces

Discusses the programming interfaces available in security enabling
services.

 Copyright IBM Corp. 1996 81

6.1 Chapter Breakdown
This design notes section contains details of the security enabling services
design and architecture, provides more technical information on each of the
security enabling services components and discusses how a developer
would go about producing an installable security subsystem.

The chapters in this part are:

• Chapter 6, “Introduction to SES Development”

This chapter provides an overview of this part of the document.

• Chapter 7, “Building an Installable Security Subsystem”

This chapter provides detail on how a developer would build an
installable security subsystem and what is required knowledge to be able
to build an installable security subsystem.

• Chapter 8, “Installable Security Subsystem Design Guidelines”

This chapter contains an action list that can be used when building an
installable security subsystem.

• Chapter 9, “SES Architecture Implementation”

This chapter contains in-depth information on the security enabling
services architecture and the major components of the current
implementation.

• Chapter 10, “Interoperation of SES and ISS”

This chapter describes how the key security enabling services
components cooperate to enable an installable security subsystem to
provide a secure OS/2 operating system.

• Chapter 11, “Security Kernel Services (SKS)”

This chapter provides in-depth information on the security kernel
services.

82 OS/2 API Security Developers Guide

• Chapter 12, “Security Context Services (SCS)”

This chapter provides in-depth information on the security context
services.

• Chapter 13, “Logon Shell Services (LSS)”

This chapter provides in-depth information on the logon shell services.

• Chapter 14, “Installation, Configuration, Initialization Support”

This chapter provides in-depth information on the installation,
configuration, and initialization support.

Chapter 6. Introduction to SES Development 83

84 OS/2 API Security Developers Guide

Chapter 7. Building an Installable Security Subsystem

To build an installable security subsystem (ISS), the developer needs to know
which security enabling services privileges will be required by the installable
security subsystem programs/processes, which APIs and KPIs will be used
by the installable security subsystem (ISS), and what security enabling
services security policy driver DLLs (SLD, CLD, PVD) will be provided by the
installable security subsystem for the security features that the installable
security subsystem supports.

The following is a brief summary of the function of key ISS components:

UIA Identifies and authenticates the user for local system logon.

SLA Establishes security context for local system logon and enforces
installable security subsystem security policy.

CLA Acts on behalf of the local system user to logon to remote services.

RLA Establishes a local security context for a remote client user.

ACA Controls access to local system resources.

APA Executes on behalf of a single client and a trusted agent.

SPA Executes on behalf of multiple clients and a trusted agent.

SLD Determines the order in which to invoke UIAs.

CLD Determines the order in which to invoke CLAs.

PVD Determines the validity of passwords (composition, history, etc.).

The following sections show which SCAs, APIs, KPIs, and DLLs will typically
be applicable for various security features:

• Logon
• Resource Access Control
• Audit
• Single Signon
• Trusted Program Support

 Copyright IBM Corp. 1996 85

7.1 Logon
Local system logon involves first identifying and authenticating the user
(UIA), and then establishing of the association between the user′s security
credentials (user identifier, group membership, administrative privileges) and
the processes executing on behalf of the user (SLA).

To enable the perception of single signon in environments where multiple
local/remote identification and authentication services are required, these
identification and authentication services can be divided into the following
functions:

• Identification and authentication for local system logon (UIA) through the
SLA.

• Identification and authentication for typically remote services (CLA) that
can′ t accept the local system identification and authentication.

The authorities that will typically be applicable for logon are the user
identification authority and system logon authority (for local system logon)
and the client logon authority and remote logon authority (for client/server
logon). The APIs/KPIs that will typically be used by the installable security
subsystem for logon depends on what services the installable security
subsystem provides. All three of the security enabling services DLLs could
be replaced by the installable security subsystem for logon services.

86 OS/2 API Security Developers Guide

Table 2. Applicable SCA, API, KPI, and DLL for Logon

SCA API KPI DLL

CLA
RLA
SLA
UIA

SESSendSecurityContext
SESCreateSubjectHandle
SESDeleteSubjectHandle
SESSetSubjectHandle
SESQuerySubjectHandle
SESCreateInstanceHandle
SESSetSubjectInfo
SESQuerySubjectInfo
SESQuerySubjectHandleInfo
SESSetContextStatus
SESQueryContextStatus
SESSetSecurityContext
SESResetThreadContext
SESQuerySecurityContext
SESQueryAuthorityID
SESKillProcess
SESControlProcessCreation
SESControlKBDMonitors
SESRegisterDaemon
SESReturnEventStatus
SESReturnWaitEvent
SESWaitEvent
SESQueryAuthorityID
SESQueryProcessIDs
SESWaitEvent:

SEND_SECURITY_CONTXT
SET_CONTEXT_STATUS

SLDInit
SLDQueryUIA
CLDInit
CLDQueryCLA
PVDValidatePassword

See appendix A for KPI details. CLD
PVD
SLD

7.2 Resource Access Control
Discretionary access control for resources is primarily accomplished through
the access control authority. The APIs/KPIs that will typically be used by the
installable security subsystem for discretionary access control depends on
what services the installable security subsystem provides. None of the
security enabling services DLLs should need to be replaced for discretionary
access control services.

Chapter 7. Building an Installable Security Subsystem 87

Table 3. Applicable SCA, API, KPI, and DLL for DAC

SCA API KPI DLL

ACA SESCreateHandleNotify
SESDeleteHandleNotify
SESQuerySubjectHandle
SESReserveSubjectHandle
SESReleaseSubjectHandle
SESQuerySubjectInfo
SESQuerySubjectHandleInfo
SESSetContextStatus
SESQueryContextStatus
SESResetThreadContext
SESQuerySecurityContext
SESQueryAuthorityID
SESWaitEvent:
SEND_SECURITY_CONTXT

SESRegisterDaemon
SESStartEvent
SESReturnEventStatus
SESReturnWaitEvent

See appendix A for KPI details. none

7.3 Audit
The independent software vendor can determine which events need to be
audited in the system and can implement the auditing code in the installable
security subsystem. KPIs are especially important to the audit function; they
are the means for accessing basic file information such as open, close and
delete. The installable security subsystem can add audit recording code to
any of the system authorities, and can record the results of any of the system
APIs and KPIs. The APIs and KPIs typically used by the installable security
subsystem for audit depends on what services the installable security
subsystem provides. None of the security enabling services DLLs should
need to be replaced for audit services.

Table 4. Applicable SCA, API, KPI, and DLL for Audit

SCA API KPI DLL

ACA
APA
CLA
RLA
SLA
SPA
UIA

This is an ISV defined function.
Any of the authorities could call
APIs which might pass back
potentially auditable information.

See appendix A for KPI details. none

88 OS/2 API Security Developers Guide

7.4 Single Signon
Client logon authority has been designed to facilitate the perception of single
signon for the system. To perform this task, the client logon authority must
have access to the identification and authentication information previously
examined by the user identification authority and system logon authority and
must be able to create unique handles. The APIs and KPIs that will typically
be used by the installable security subsystem for single signon depends on
what services the installable security subsystem provides. The client logon
driver could be replaced for single signon services.

Table 5. Applicable SCA, API, KPI, and DLL for Single Signon

SCA API KPI DLL

CLA SESSendSecurityContext
SESCreateHandleNotify
SESDeleteHandleNotify
SESQuerySubjectHandle
SESCreateInstanceHandle
SESQuerySubjectInfo
SESQuerySubjectHandleInfo
SESSetContextStatus
SESQueryContextStatus
SESResetThreadContext
SESQuerySecurityContext
SESQueryAuthorityID
SESWaitEvent:
SEND_SECURITY_CONTXT

See appendix A for KPI details. CLD

7.5 Trusted Program Support
Trusted program support is typically provided through installable security
subsystem APIs. However, the security enabling services privileges
associated with agent process authority and server process authority enable
a process to exploit the trusted program support. The APIs and KPIs that will
typically be used by the installable security subsystem for trusted programs
depends on what services the installable security subsystem provides. None
of the security enabling services DLLs should need to be replaced for trusted
program support.

Chapter 7. Building an Installable Security Subsystem 89

Table 6. Applicable SCA, API, KPI, and DLL for Trusted Program Support

SCA API KPI DLL

APA
SPA

SESSendSecurityContext
SESSetSubjectHandle
(SPA only)
SESQuerySubjectHandle
SESReserveSubjectHandle
(SPA only)
SESReleaseSubjectHandle
(SPA only)
SESQuerySubjectInfo
SESQuerySubjectHandleInfo
SESQueryContextStatus
SESResetThreadContext
SESQuerySecurityContext
SESQueryAuthorityID
SESWaitEvent:
SEND_SECURITY_CONTXT

 (SPA only)

See appendix A for KPI details. CLD

90 OS/2 API Security Developers Guide

Chapter 8. Installable Security Subsystem Design Guidelines

Refer to Chapter 12, “Security Context Services (SCS)” on page 161 for
information on building and installing an installable security subsystem.

The following action list is provided as a guide for developing installable
security subsystem applications.

Action Explanation

Study Part 2, “Design Notes” on page 79 This section of the document provides details on
the system architecture which the designer must
understand before an installable security
subsystem can be created. It shows the
interactions of authorities and the system calls
(APIs and KPIs) make.

Choose the security function to implement. Determine the security function to add to the
system. The system is designed to readily
incorporate new identification and
authentication, discretionary access control and
audit functions. Some form of single signon
capability already exists in the system; it may
be easy to enhance the features already
provided for this function, but replacing the
function would be difficult. Trusted program
support is also provided in the basic system
design.

 Copyright IBM Corp. 1996 91

Action Explanation

Study the predefined sequence of events for the
function you want to implement.

Specific events have already been defined for
the system. Examine them to discover the
authorities, APIs, etc. you will need for your
application.

Determine the authorities you need to
implement your function.

Specific system privileges have been assigned
to each of the defined authorities.

Do your applications need to run with multiple
authorit ies?

Your applications can run with multiple
authorities if needed. The system also allows
multiple user identification authorities and client
logon authorities.

Do you need to implement a client/server
solution?

Client logon and remote logon are the
authorities that have been designed for
cl ient/server environments.

Do you need to add to or modify the user
display?

The system logon authority usually contains
some kind of user display application. User
identification authority and client logon authority
have the ability to query the user for logon
information.

Do you need to interface with pre-existing
security solutions?

Determine the requirements of the pre-existing
solution. For example, it is possible to associate
the user credentials in the OS/2 environment
with credentials created by a trusted program
such as a LAN Server. This would be done in
an installable security subsystems internal
database. Make sure that any independent
software vendor defined installable security
subsystem APIs are compatible with the existing
programs.

92 OS/2 API Security Developers Guide

Action Explanation

Determine the APIs and KPIs you need to use. To determine the APIs and KPIs that will be
used, you will need to assess the following:

• Do you need to reference, delete, create or
modify handles or threads?

• Do you need to add to or pass user
credentials on to a trusted application?

• Do you need to receive notification of
system events?

Note that these questions should also be asked
when determining what authorities to run with.

Do you need to modify or replace the contents
of the CLD, SLD or PVD?

Modify the client logon driver if you need to
determine the order in which client logon
authorities should be called. Modify the system
logon driver if you need to determine the order
in which UIAs should be called. Modify the
password validation driver if you need to add
password rule checking to the system.

Do you need to use the POSIX compliant
inheritance scheme?

If the answer to this question is yes, make sure
the /PROPAGATE flag in SECURE.SYS is yes for
each program wanting the POSIX-compliant
inheritance scheme.

Do you need to modify CONFIG.SYS and
SECURE.SYS?

Modify CONFIG.SYS if you want to include an
installable security subsystem in the system.
Modify SECURE.SYS if you want to assign
authorities to installable security subsystem
applications.

Chapter 8. Installable Security Subsystem Design Guidelines 93

94 OS/2 API Security Developers Guide

Chapter 9. SES Architecture Implementation

Securtiy Enabling System (SES) is implemented as a set of application
processes, dynamic link libraries, and kernel components (device driver,
DevHlps). SES also requires changes to the OS/2 kernel and
keyboard/mouse device drivers. Figure 16 on page 96 provides an overview
of the SES architecture and related ISS components:

ISS API: DLL functions that provide an application
programming interface for ISS services.

ISS Security Daemon(s): Ring-3 component(s) of the installable security
subsystem, SLA, UIA, CLA, ACA, etc.

ISS Security Kernel: Ring-0 component of the installable security
subsystem (implemented as an OS/2 device
driver).

SES API: DLL functions that provide an application
programming interface for security enabling
services.

SES KPI: IDC functions that provide a kernel programming
interface for security enabling services.

SES Daemons: Ring-3 components of SES (SES daemon, PSS
daemon, SESShell daemon).

SES Device Driver: Ring-0 component of security enabling services.

 Copyright IBM Corp. 1996 95

Figure 16. SES Architecture - Overview of Key Components

9.1 Security Kernel Services

The security kernel services architecture consists of a security event router
and security helpers in the OS/2 kernel. The security event router supports a
wide range of security solutions by providing a way for an installable security
subsystem to specify exactly which security relevant events it wants to
intercept. When specified events such as file access or process creation
occur, the router notifies the installable security subsystem which then has
the opportunity to grant or deny access. Security kernel services also
provides a set of kernel level security helpers that enable an installable
security subsystem to invoke operating system services that aren′ t otherwise
available at the kernel level.

96 OS/2 API Security Developers Guide

The following illustration demonstrates the general security kernel services
model for interaction between the installable security subsystem security
kernel and OS/2 kernel components such as the file system router.

Figure 17. SKS Architecture - Interaction between SKS and ISS Security Kernel

Chapter 9. SES Architecture Implementation 97

9.1.1 Security Event Router
The security event router hooks enable an installable security subsystem
security kernel to intercept the following security relevant OS/2 kernel
services/support:

• Security Relevant OS/2 System Calls
• Callgate Level Support
• Multiple Virtual DOS Machine Support
• Logon Shell Services Trusted Path Support
• Security Enabling Services API Audit Support

9.1.1.1 Callouts for Security Relevant OS/2 System Calls
For a selected set of OS/2 kernel system calls (for example DosOpen,
DosExecPgm) the OS/2 kernel worker routines have been modified to call a
corresponding routine in the installable security subsystem.

The installable security subsystem services the notification and returns with
the appropriate status condition for the event. If an error code is returned,
then the worker routine does not continue.

The OS/2 system calls that are currently supported include the following:

• Change directory
• Change file pointer
• Close
• Delete
• Device input/output control
• Execute program
• Find close
• Find close 3X
• Find first
• Find first 3X
• Find next
• Get module
• Loader open
• Make directory
• Move
• Open
• Query file information
• Read
• Remove directory
• Set date/time
• Set file information
• Set file size

98 OS/2 API Security Developers Guide

• Set path information
• Write

For further details see appendices.

9.1.1.2 Callouts for Callgate Level Support
Since it is impossible to anticipate every possible callout an installable
security subsystem may require, an extensible architecture was developed
for hooking calls into the the kernel at the callgate level. This allows an
installable security subsystem to monitor events for which there are no
callouts. Callgate hooks are a second class citizen to the OS/2 system call
hooks, they result in slower system performance and are more difficult for
installable security subsystem developers to use.

Callgate level hooks are provided for both 16-bit and 32-bit OS/2 system
calls.

9.1.1.3 Callouts for Multiple Virtual DOS Machine Support
The OS/2 system call hooks catch all file system calls in a Virtual DOS
Machine (VDM). This should be sufficient to enforce access control in a DOS
session. The security kernel services architecture provides an installable
security subsystem the capability to hook the MVDM (Multiple VDM) Dispatch
Table so, as with callgate hooks, an installable security subsystem has
maximum flexibility in specifying and screening security events.

9.1.1.4 Callouts for Logon Shell Services Trusted Path Support
A callout is provided for the logon shell services trusted path support so that
the installable security subsystem security kernel can be notified when the
trusted path key combination is detected and can direct the keyboard device
driver to take the appropriate action.

9.1.1.5 Callouts for Security Enabling Services API Audit
Support
Callouts are provided for all security control services APIs so that the
installable security subsystem security kernel can audit these functions.

9.1.2 Security Helpers
Security helpers are routines that an installable security subsystem can call
from a device driver for basic operating system services that aren′ t
otherwise available at Ring-0.

• File System Services
• Security Context Services

Chapter 9. SES Architecture Implementation 99

9.1.2.1 Security Helpers for File System Services
The file system services that are currently supported include the following:

• Change pointer
• Close
• Find next
• Open
• Query size
• Read
• Return fully qualified path name given system file number
• Return system file table entry given system file number
• Write

For further details see appendices.

9.1.2.2 Security Helpers for Security Context Services
Security helpers are provided for most of the security context services APIs
so that the installable security subsystem security kernel can invoke these
from Ring -0. These SecHlps are described in 9.2, “Security Context
Services.”

9.2 Security Context Services

Security control services addresses the requirements to support multiple
concurrently active security applications, multiple concurrently active users,
and trusted programs. This is accomplished by associating each process
with the information necessary for security applications (such as an
installable security subsystem) to determine the credentials (for example,
user ID, group ID(s), administrator privileges, etc.) of the user on whose
behalf the process is executing. The information that security control
services associates with each process is referred to as the security context
of the process.

The security context associated with each process (and each thread of
execution of a process) consists of the following:

100 OS/2 API Security Developers Guide

• Set of subject handles that a security application can associate with
user/group/process credentials

• Set of security context status flags that are used to maintain SES status
information

Figure 18. SCS Architecture - User/Group/Process Security Credentials

The following sections describe the security context and the associated
services provided by security control services.

Chapter 9. SES Architecture Implementation 101

9.2.1 Process-User Association
Security control services enables each security application to manage its
own view of the process-user association by doing the following:

• Associating credentials (user ID, group membership, trusted program
privileges, etc.) for each user/group/process with a unique subject
handle

• Associating each subject (for example process executing on behalf of a
user/group) with a set of subject handles (user, group, process)

Using these subject handles, security applications can recognize what
user/group/process credentials should be associated with a process by
querying the subject handles that are associated with the process. This
concept allows multiple security applications to interoperate without forcing a
common view of user/group/process credentials.

To support trusted programs (for example, POSIX setuid), security enabling
services maintains both client and agent user/group/process handles for
each process/thread. The client handle is associated with the
user/group/process using the services of a security application (for example,
the user who invoked a trusted program). The agent handle is associated
with the user/group/process credentials of the security application itself (for
example, the owner of a trust program).

9.2.1.1 Subject Handles
The security context associated with each process/thread includes the
following subject handles:

Client User Handle (CUH) The client user handle enables an
installable security subsystem to associate
a process with user credentials for the user
on whose behalf the process is executing.

Agent User Handle (AUH) The agent user handle enables an
installable security subsystem to associate
a trusted program/process with special user
credentials, for example the POSIX setuid
model. In addition, a server process can
assume the effective (client or agent) user
handle of a client process (when requested
by the client process) as the server′s client
user handle (not the server′s agent user
handle) thus extending the security enabling

102 OS/2 API Security Developers Guide

services trusted program/process model to
a client/server IPC model.

Client Group Handle (CGH) The client group handle enables an
installable security subsystem to associate
a process with group credentials for the
group on whose behalf the process is
executing.

Agent Group Handle (AGH) The agent group handle enables an
installable security subsystem to associate
a trusted program/process with special
group credentials, for example the POSIX
setgid model. In addition, a server process
can assume the effective (client or agent)
group handle of a client process (when
requested by the client process) as the
server ′s client group handle (not the
server ′s agent group handle) thus extending
the security enabling services trusted
program/process model to a client/server
IPC model.

Client Process Handle (CPH) The client process handle enables an
installable security subsystem to associate
a process with additional information that is
not directly associated with user/group
credentials and should not be affected by
changing the effective user/group of the
process for example the POSIX umask
model.

Agent Process Handle (APH) The agent process handle enables a server
process to assume the effective (client or
agent) process handle of a client process
(when requested by the client process) as
the server′s client process handle (not the
server ′s agent process handle) thus
extending the security enabling services
trusted program/process model to a
client/server IPC model.

When a subject handle is created, it is associated with a subject name and
optionally a subject token. The name is the key by which all security
components recognize the same subject (user/group/process). The token is

Chapter 9. SES Architecture Implementation 103

used to facilitate the perception of single signon for multiple user
identification and authentication components such as a local signature
verification mechanism and a remote server password mechanism. The
source of authority for creation of the handle is preserved in the source field.
The instance field is discussed in the next section.

Figure 19. SCS Architecture - Subject Handles

The association between a subject handle (dynamically-generated unique
value) and a user/group/process is unique for the life of a boot for example
each handle can only be associated with one user/group/process (although
one user/group/process can be associated with multiple subject handles).

Note that this association is dynamically created when the subject handle is
created. For example it is not statically maintained across system boots

104 OS/2 API Security Developers Guide

when the system is rebooted; all existing subject handle information is lost.
Security applications (such as an installable security subsystem) must
maintain the static association between a user/group/program and the
associated credentials.

To facilitate security application management of user/group/process
credentials associated with subject handles, security applications can
register to be notified when subject handles are created or deleted.

• Security applications that are registered for create handle notification are
notified when a subject handle is created, whether or not the subject
handle is associated with any process/thread at the time it is created.

• Security applications that are registered for delete handle notification are
notified when a subject handle is deleted and when the handle is no
longer referenced by any process/thread. For example security
applications will not be notified if either the subject handle is not deleted
or if the subject handle is still referenced by any process/thread.

Note: For subject handles that are directly associated with a user and
should only be regarded as valid while a user′s processes are
active, the subject handles should be deleted after they are set
into the security context of the user′s processes. This will allow
the delete handle notification to proceed when these subject
handles are no longer referenced by any process/thread.

For subject handles that are not directly associated with a user
and should be regarded as valid even though they′re not
associated with a user′s processes (for example, subject handles
for groups or trusted programs), the subject handles should not be
deleted. This will prevent the delete handle notification from
proceeding even though a subject handle is not currently
referenced by any process/thread (but may be associated with a
process/thread in the future).

Two subject handles are reserved (for example, never created or deleted)
and require special recognition by all security components.

Subject Handle = 0: superuser or system process, should
- name = ′ ′ (null) be granted full access to all objects
- token = ′ ′ (null) (at least during system initialization).
- source = 0

Subject Handle = -1: unauthenticated user, should not be
- name = ′ Guest′ granted access to protected objects
- token = ′ ′ (null) (except for guest/public/default etc.).
- source = 0

Chapter 9. SES Architecture Implementation 105

9.2.1.2 Instance Handles
Security control services enables a client logon authority, acting on behalf of
a client process, to create/assign new user/group/process handles for the
client process that the client logon authority can associate with different
user/group/process credentials than the original subject handles of the client
process. However, since a client logon authority can only change its view of
what credentials are associated with its client process, the new handles that
the client logon authority creates/assigns must not affect other security
control authority views of what credentials are associated with the client
logon authorities process. For example, for all security context authorities
other than the client logon authority that created/assigned these new handles
for a client process, the handles should be associated with the same
credentials as the original subject handles that were associated with the
client logon authorities client process.

Consequently, when a handle is created by a client logon authority (for a
client process), it is marked as an instance of the original subject handle.
For all security context authorities other than the client logon authority that
creates an instance handle, the handle is associated with the same
user/group/process credentials as the original subject handle. The effect of
a client logon authority creating/assigning an instance handle is to change
its view of the user/group/process credentials associated with its client
process without affecting any other security context authorities view of the
user/group/process credentials associated with the same process.

A client logon authority process may create/assign an instance handle for a
client process only when the client logon authorities client logon authorities
services are requested through security enabling services. Special security
enabling services functions enable the client logon authority to create/assign
instance handles for the subject handles of its client processes (only). Once
instance handles are created/assigned by a client logon authority for a client
process, the instance handles are managed the same as any subject handle
(for example, a child process will inherit instance handles in the same way
as other subject handles).

106 OS/2 API Security Developers Guide

Figure 20. SCS Architecture - Instance Handles

Again, to facilitate security application management of user/group/process
credentials associated with subject/instance handles, security applications
can register to be notified when subject/instance handles are created or
deleted. As discussed previously, to kick off delete handle notification for
subject handles, they must be explicitly deleted after they are set in the
security context of a process/thread. However, instance handles are
implicitly deleted when they are set in the security context of the client logon
authorities process. Consequently, delete handle notification, for instance
handles, will automatically be kicked off when the instance handle is no
longer referenced by the client logon authorities process (or any process that
inherited the instance handle from the client logon authorities process).

Chapter 9. SES Architecture Implementation 107

• Security applications that are registered for create handle notification are
notified when an instance handle is created, whether or not the instance
handle is associated with any process/thread at the time it is created.

• Security applications that are registered for delete handle notification are
notified when an instance handle is no longer referenced by any
process/thread for example security applications will not be notified if the
instance handle is still referenced by any process/thread.

9.2.2 Process-Status Association
The security context status of a process includes information about the state
of the process (with respect to security enabling services functions for
example the current state of the effective (client or agent)
user/group/process flags) and the authority of the process (again with
respect to security enabling services functions, for example, the authority of
a process to invoke privileged security enabling services functions).

The security context status includes the following state flags:

EGF: Effective Group Flag
EPF: Effective Process Flag
EUF: Effective User Flag
LUF: Local User Flag
PAF: Propagate Authority Flag

Some privileged security enabling services functions must only be invoked
by processes that can be trusted to use the functions appropriately. A
trusted process (program) that has the authority to invoke these privileged
functions is referred as a security context authority (SCA). To support the
concept of least privileged operation, the privileged security enabling
services functions are divided into sets of operations that correspond to the
various roles that a trusted application might serve in a secured OS/2
system:

ACA: Access Control Authority
APA: Agent Process Authority
CLA: Client Logon Authority
RLA: Remote Logon Authority
SLA: System Logon Authority
SPA: Server Process Authority
UIA: User Identification Authority

108 OS/2 API Security Developers Guide

Each security control authority role (and the corresponding set of privileged
functions) is represented by an authority flag in the security context status
that is associated with each process. When a privileged security enabling
services function is invoked by a process, these flags are checked to ensure
that the process has the appropriate authority to invoke the privileged
function.

Note that a process (program) may be serving multiple security control
authority roles and, consequently, may have more than one authority flag set
in its security context. For example, an access control authority could also
be an server process authority and, consequently, would have both the
access control authority and server process authority flags set in its security
context.

Figure 21. SCS Architecture - Process Authority

Chapter 9. SES Architecture Implementation 109

9.2.3 Definition of Security Context
The security context associated with each OS/2 process is defined as the set
of subject handles (client/agent user/group/process) and status information
that can be used by a security application (such as an installable security
subsystem) to associate its own user/group/process credentials (user ID,
group membership, trusted program privileges) with the process.

• Client User Handle (CUH)
• Agent User Handle (AUH)
• Client Group Handle (CGH)
• Agent Group Handle (AGH)
• Client Process Handle (CPH)
• Agent Process Handle (APH)
• Security Context Status

The security context associated with the process (but not necessarily with
any thread of execution of the process) is referred to as the maximum
security context. The security context associated with a thread of execution
of a process is referred to as the effective security context.

9.2.3.1 Maximum Security Context
The maximum security context is established at process creation. All
threads of a process always share the same maximum security context. The
maximum security context of a process reflects the highest authority that any
thread of the process can set in its effective security context.

9.2.3.2 Effective Security Context
A thread of a process can set its effective security context authority up (to
the maximum) and down as necessary for example a thread may need to set
its authority down when creating another process so that the new process
doesn ′ t inherit all of the authority of the thread.

The default for the effective security context is a process model such as all
threads of a process share the same effective security context; so, if one
thread makes a change in the effective security context, all other threads of
the process will see the same change. This process security context model
is enforced until a thread of an SCA process explicitly requests to have its
own effective security context.

If a thread of a security control authority process explicitly requests to have
its own effective security context, then the effective security context for the
thread is maintained separate from the effective security context of the
process (and separate from the maximum security context of the process).

110 OS/2 API Security Developers Guide

When a thread that has requested a separate effective security context
makes any changes to it, the changes will not affect the effective security
context of any other thread of the process or the effective security context of
the process (or the maximum security context of the process).

9.2.3.3 Subject Handle Information
The purpose of each of the subject handles was discussed previously, to
summarize:

Client User Handle (CUH) Enables association of a process with user
credentials for the user on whose behalf the
process is executing, for example, POSIX
real uid.

Agent User Handle (AUH) Enables association of a trusted process
with user credentials for a special user
associated with a trusted program, for
example, POSIX saved uid.

Client Group Handle (CGH) Enables association of a process with group
credentials for the group on whose behalf
the process is executing, for example,
POSIX real gid.

Agent Group Handle (AGH) Enables association of a trusted process
with group credentials for a special group
associated with a trusted program, for
example, POSIX saved gid.

Client Process Handle (CPH) Enables association of a process with
credentials/information that should not be
affected by changing the effective
user/group, for example, POSIX umask.

Agent Process Handle (APH) Enables association of a trusted server
process with a client′s process
credentials/information or its own process
credentials/information.

The information maintained for each subject handle includes the name of the
subject associated with the handle, the token (password) of the user
(applicable for user handles only), the source of authority for creation of the
handle, and a pointer to the original handle of an instance handle.

• Handle
• Instance
• Name

Chapter 9. SES Architecture Implementation 111

• Token
• Source

The instance field is used to indicate whether the handle is an original
handle created by an system logon authority or remote logon authority, or an
instance of a handle created by a client logon authority. If the instance field
is set to -1, then the handle is an original handle created by an system logon
authority or remote logon authority. Otherwise the instance field contains
the original handle that this handle is an instance of. Note that an instance
handle may be an instance of another instance handle but an original handle
created by a system logon authority or remote logon authority will be at the
root of a chain of instance handles.

The source field indicates which SLA/RLA created the handle or which user
identification authority authenticated the user (or what authentication rule
was used to authenticate the user) for local system logon. This field is used
to enforce the policy that RLAs can only set handles that they create, and to
enforce the policy that SLA/RLAs can only delete handles that they create.
This field could also be used by the installable security subsystem or an
access control authority to give a process more or less privileges depending
on the source of authority for creation of the handle, for example, force
system administrators to use a fingerprint device for authentication, but allow
other users to use a Personal Identification Number (PIN) device for
authentication.

The value specified in the source field is determined by the following
methods depending on how the subject handle is created:

 1. If the subject handle is created by a system logon authority or remote
logon authority, then the source field will be set equal to the authority ID
of the creating process (SLA or RLA).

 2. For the client user handle created during local system logon (by security
enabling services), the source field may contain either the authority ID of
the UIA that authenticated the user or an authentication rule number. An
authentication rule number could be used to indicate that a more
complex authentication algorithm, potentially involving multiple user
identification authorities, was used to authenticate the user. For
example, authentication rule numbers could be defined to indicate that
the authentication for local system logon was accomplished by various
combinations of user identification authorities.

The value specified in the source field indicates whether it is an authority ID
or an authentication rule number:

112 OS/2 API Security Developers Guide

4-255: Authority ID. The authority ID is discussed in more
detail in the following section that describes the
security context status.

256-MAX: Authentication Rule Number. The authentication rule
number is discussed in more detail as part of the
Logon Shell Services (LSS), Chapter 13, “Logon Shell
Services (LSS)” on page 189.

9.2.3.4 Security Context Status
The security context status consists of an authority ID, state flags, and
authority flags.

• The authority ID associates a process with the corresponding trusted
programs specified in SECURE.SYS.

• The state flags represent the state of a process/thread (with respect to
security enabling services for example whether the effective group
handle is currently the client group handle or the agent group handle).

• The authority flags represent the authority of a process/thread (again
with respect to security enabling services, for example, whether the
process has access control authority privileges or not).

Authority ID: Each security control authority specified in SECURE.SYS
(except agent process authority) is assigned a unique authority ID during
security enabling services initialization. Security enabling services uses the
authority ID for the following purposes:

 1. The authority ID is used to designate the target security control authority
for the SESSendSecurityContext() API.

For processes with no special authority (UPA) or only agent process
authority (APA), the authority ID is set to zero (AuthorityID=0) and,
consequently, UPAs and APAs can′ t be the target for
SESSendSecurityContext().

Note that multiple cooperating processes that are acting as a single
security control authority will have the same authority ID. For example,
multiple programs may need to act together as a single client logon
authority application the corresponding processes will be assigned the
same authority ID.

 2. An authority ID can be specified in the source field of the subject handle
information structure. The authority ID of an SLA/RLA can be specified
as the source of authority for creation of subject handles, or the authority
ID of a user identification authority can be specified as the source of
authentication for the client user handle during local system logon.

Chapter 9. SES Architecture Implementation 113

The source field in the subject handle information structure is used to
enforce policies on setting/deleting subject handles (by comparing it
against the authority ID of the process that is attempting to set/delete a
subject handle).

State Flags: In the maximum security context, the state flags indicate
whether the process can modify the corresponding state flags in the effective
security context or not. In the effective security context, the state flags
indicate the current state of a process/thread with respect to security
enabling services, for example whether the effective group handle is
currently the client group handle or the agent group handle.

• Effective Group Flag (EGF)

The effective group flag in the maximum security context specifies
whether the process can modify the effective group flag in the effective
security context or not:

Maximum EGF=0: Process/thread cannot modify EGF in
effective security context

Maximum EGF=1: Process/thread can modify EGF in
effective security context

The effective group flag in the effective security context specifies whether
the process/thread effective group handle is the client group handle or
the agent group handle:

Effective EGF=0: Process/thread Effective Group Handle
=> Client Group Handle

Effective EGF=1: Process/thread Effective Group Handle
=> Agent Group Handle

At process creation, the effective group flag will be set (EGF=1) in the
maximum and effective security contexts if the process has any authority
flags set (APA=1, SPA=1, etc.). The effective group flag in the effective
security context may be reset (EGF=0) by the installable security
subsystem at process creation.

• EPF (Effective Process Flag)

The effective process flag in the maximum security context specifies
whether the process can modify the effective process flag in the effective
security context or not:

Maximum EPF=0: Process/thread cannot modify EPF in
effective security context

Maximum EPF=1: Process/thread can modify EPF in
effective security context

114 OS/2 API Security Developers Guide

The effective process flag in the effective security context specifies
whether the process/thread effective process handle is the client process
handle or the agent process handle:

Effective EPF=0: Process/thread Effective Process Handle
=> Client Process Handle

Effective EPF=1: Process/thread Effective Process Handle
=> Agent Process Handle

At process creation, the effective process flag will be set (EPF=1) in the
maximum and effective security contexts if the process has any authority
flags set (APA=1, SPA=1, etc.). The effective process flag in the
effective security context may be reset (EPF=0) by the installable
security subsystem at process creation.

• Effective User Flag (EUF)

The effective user flag in the maximum security context specifies whether
the process can modify the effective user flag in the effective security
context or not:

Maximum EUF=0: Process/thread cannot modify EUF in
effective security context

Maximum EUF=1: Process/thread can modify EUF in
effective security context

The effective user flag in the effective security context specifies whether
the process/thread effective user handle is the client user handle or the
agent user handle:

Effective EUF=0: Process/thread Effective User Handle
=> Client User Handle

Effective EUF=1: Process/thread Effective User Handle
=> Agent User Handle

At process creation, the effective user flag will be set (EUF=1) in the
maximum and effective security contexts if the process has any authority
flags set (APA=1, SPA=1, etc.). The effective user flag in the effective
security context may be reset (EUF=0) by the installable security
subsystem at process creation.

• Local User Flag (LUF)

Although OS/2 security context services can support multiple concurrent
users, the OS/2 Presentation Manager (PM) can only support one local
user at a time (for example only one local user can interact with PM
through the keyboard, mouse, display). Consequently, a process needs
to be able to determine whether it can communicate with the user
through PM interfaces or not.

Chapter 9. SES Architecture Implementation 115

The local user flag in the maximum security context specifies whether
the process can modify the local user flag in the effective security context
or not:

Maximum LUF=0: Process/thread cannot modify LUF in
effective security context

Maximum LUF=1: Process/thread can modify LUF in
effective security context

The local user flag in the effective security context specifies whether the
process/thread can communicate with the user through PM interfaces or
not:

Effective LUF=O: Process/thread cannot communicate with the user
through PM interfaces

Effective LUF=1: Process/thread can communicate with the user
through PM interfaces

At process creation, the local user flag will be set (LUF=1) in the
maximum and effective security contexts for the following:

− PM/WPS (local system logon)
− Processes created for programs with the /LOCALUSER=YES option

specified in SECURE.SYS
− Processes created from a parent process with LUF set (LUF=1) in its

effective security context, unless a process is created for a program
with the /LOCALUSER=NO option specifed in SECURE.SYS

• Propagate Authority Flag (PAF)

The propagate authority flag in the maximum security context specifies
whether the process can modify the propagate authority flag in the
effective security context or not:

Maximum PAF=0: Process/thread cannot modify PAF in
effective security context

Maximum PAF=1: Process/thread can modify PAF in
effective security context

The propagate authority flag in the effective security context specifies
whether a child process will inherit the Agent User/Group/Process
Handles and authority flags (APA, SPA, etc.) from the effective security
context of the parent process/thread or not:

Effective PAF=0: Child maximum and effective AGH = parent process/
thread effective CGH
Child maximum and effective APH = parent process/
thread effective CPH
Child maximum and effective AUH = parent process/
thread effective CUH

116 OS/2 API Security Developers Guide

Child maximum and effective ACA = 0
Child maximum and effective APA = 0
Child maximum and effective CLA = 0

Effective PAF=1: Child maximum and effective AGH =
Parent process/thread effective AGH
Child maximum and effective APH = parent process/
thread effective APH
Child maximum and effective AUH = parent process/
thread effective AUH

Child maximum and effective ACA = parent process/
thread effective ACA
Child maximum and effective APA = parent process/
thread effective APA
Child maximum and effective CLA = parent process/
thread effective CLA

At process creation, the propagate authority flag will only be set (PAF=1)
in the maximum and effective security contexts for the following:

− Processes created for programs with the /PROPAGATE=YES option
specified in SECURE.SYS, for example the propagate authority flag
can not be inherited from the parent process

Authority Flags: In the maximum security context, the authority flags
indicate whether the process can modify the corresponding authority flags in
the effective security context or not. In the effective security context, the
authority flags indicate the current security context authority privileges of a
process/thread for example whether the process has access control authority
privileges or not.

A process with an authority flag set in its security context can perform the
associated privileged operations. Each security control authority role is
associated with the privileges it needs to accomplish its role in a secured
OS/2 system. Some privileges are associated with more than one SCA role,
but there is no defined hierarchy of security control authority roles.

• Access Control Authority (ACA)

The access control authority flag in the maximum security context
specifies whether the process can modify the access control authority
flag in the effective security context or not:

Chapter 9. SES Architecture Implementation 117

Maximum ACA=0: Process/thread cannot modify ACA flag in
effective security context

Maximum ACA=1: Process/thread can modify ACA flag in
effective security context

The access control authority flag in the effective security context
specifies whether the process has access control authority privileges or
not:

Effective ACA=O: Process/thread does not have ACA privileges
Effective ACA=1: Process/thread has ACA privileges

ACA privileges enable a process/thread to do the following:

− Switch the effective user handle to either client or agent
− Switch the effective group handle to either client or agent
− Switch the effective process handle to either client or agent
− Receive notification when subject handles are created or deleted

• Agent Program/Process Authority (APA)

The agent process authority flag in the maximum security context
specifies whether the process can modify the agent process authority
flag in the effective security context or not:

Maximum APA=0: Process/thread cannot modify APA flag in
effective security context

Maximum APA=1: Process/thread can modify APA flag in
effective security context

The agent process authority flag in the effective security context specifies
whether the process has agent process authority privileges or not:

Effective APA=O: Process/thread does not have APA privileges
Effective APA=1: Process/thread has APA privileges

Agent process authority privileges enable a process/thread to do the
following:

− Switch the effective user handle to either client or agent
− Switch the effective group handle to either client or agent
− Switch the effective process handle to either client or agent

• Client Logon Authority (CLA)

The client logon authority flag in the maximum security context specifies
whether the process can modify the client logon authority flag in the
effective security context or not:

118 OS/2 API Security Developers Guide

Maximum CLA=0: Process/thread cannot modify CLA flag in
effective security context

Maximum CLA=1: Process/thread can modify CLA flag in
effective security context

The client logon authority flag in the effective security context specifies
whether the process has client logon authority privileges or not:

Effective CLA=O: Process/thread does not have CLA privileges
Effective CLA=1: Process/thread has CLA privileges

Client logon authority privileges enable a process/thread to do the
following:

− Switch the effective user handle to either client or agent
− Switch the effective group handle to either client or agent
− Switch the effective process handle to either client or agent
− Access the name and token of the local system logon user
− Create and assign instance handles for a client process

• Remote Logon Authority (RLA)

The remote logon authority flag in the maximum security context
specifies whether the process can modify the remote logon authority flag
in the effective security context or not:

Maximum RLA=0: Process/thread cannot modify RLA flag
in effective security context

Maximum RLA=1: Process/thread can modify RLA flag
in effective security context

The remote logon authority flag in the effective security context specifies
whether the process has remote logon authority privileges or not:

Effective RLA=O: Process/thread does not have RLA privileges
Effective RLA=1: Process/thread has RLA privileges

Remote logon authority privileges enable a process/thread to do the
following:

− Switch the effective user handle to either client or agent
− Switch the effective group handle to either client or agent
− Switch the effective process handle to either client or agent
− Create subject handles
− Set its client/agent user/group/process handles to subject handles it

creates and -1

Chapter 9. SES Architecture Implementation 119

• System Logon Authority (SLA)

The system logon authority flag in the maximum security context
specifies whether the process can modify the system logon authority flag
in the effective security context or not:

Maximum SLA=0: Process/thread cannot modify SLA flag
in effective security context

Maximum SLA=1: Process/thread can modify SLA flag
in effective security context

The system logon authority flag in the effective security context specifies
whether the process has system logon authority privileges or not:

Effective SLA=O: Process/thread does not have SLA privileges
Effective SLA=1: Process/thread has SLA privileges

System logon authority privileges enable a process/thread to do the
following:

− Switch the effective user handle to either client or agent
− Switch the effective group handle to either client or agent
− Switch the effective process handle to either client or agent
− Create subject handles
− Set its client/agent user/group/process handles to any valid handle

including -1 and 0
− Establish the security context for local system logon
− Establish the security context for SCAs specified in SECURE.SYS
− Establish the security context for processes not associated with local

system logon

• Server Program/Process Authority (SPA)

The server process authority flag in the maximum security context
specifies whether the process can modify the server process authority
flag in the effective security context or not:

Maximum SPA=0: Process/thread cannot modify SPA flag in
effective security context

Maximum SPA=1: Process/thread can modify SPA flag in
effective security context

The server process authority flag in the effective security context
specifies whether the process has server process authority privileges or
not:

Effective SPA=O: Process/thread does not have SPA privileges
Effective SPA=1: Process/thread has SPA privileges

Server process authority privileges enable a process/thread to do the
following:

120 OS/2 API Security Developers Guide

− Switch the effective user handle to either client or agent
− Switch the effective group handle to either client or agent
− Switch the effective process handle to either client or agent
− Set its client user/group/process handles to the effective

user/group/process handles of a client
− Reserve a client′s user/group/process handles in a list of handles it

is allowed to set
− Release a client′s user/group/process handles from its list of allowed

handles

• User Identification Authority (UIA)

The user identification authority flag in the maximum security context
specifies whether the process can modify the user identification authority
flag in the effective security context or not:

Maximum UIA=0: Process/thread cannot modify UIA flag in
effective security context

Maximum UIA=1: Process/thread can modify UIA flag in
effective security context

The user identification authority flag in the effective security context
specifies whether the process has user identification authority privileges
or not:

Effective UIA=O: Process/thread does not have UIA privileges
Effective UIA=1: Process/thread has UIA privileges

User identification authority privileges enable a process/thread to do the
following:

− Switch the effective user handle to either client or agent
− Switch the effective group handle to either client or agent
− Switch the effective process handle to either client or agent
− Identify and authenticate a user for local system logon session events

A process that doesn′ t have any of the above security enabling services
authority flags set in its security context status is referred to as a
unprivileged process authority.

The following additional authority flags are reserved for security enabling
services daemon processes only:

• SES (Security Enabling Services)
• PSS (Protected Shell Services)

Chapter 9. SES Architecture Implementation 121

9.2.3.5 Security Context Creation
The maximum security context and the initial effective security context of a
process is established at program execution (process creation). The subject
handles (CUH, AUH, CGH, AGH, CPH, APH) and status flags (ACA, APA, EGF,
EPF) in the maximum and effective security context of a newly created
process are determined from the following sources:

 1. Inherited from the parent process
 2. Specified in the SECURE.SYS file
 3. Specified by the SLA in response to a process creation event
 4. Specified by the ISS security kernel in response to a Pre-ExecPgm callout

Please note that the security enabling services APIs do not support
modification of the maximum security context for a process after it is
established at process creation.

Also please note that new threads do not inherit the effective security context
of the creating thread, they inherit the effective security context of the
process (which is maintained by thread-1 of the process). When a newly
created thread first enters the SES device driver (via any SES API or KPI),
the security context pointer in its trusted computing base will be set to the
same security context pointer that thread-1 of the process has in its trusted
computing base and, consequently, the newly created thread will have the
same effective security context as the process (default process security
context model) until it explicitly requests its own separate effective security
context (optional thread security context model).

Security Context Inherited from Parent Process: The client
user/group/process handles are inherited from the parent process/thread.
The agent user/group/process handles can be inherited from the parent
process/thread if it has the propagate authority flag set in its effective
security context. All authority flags can be inherited from the parent
process/thread if it has the propagate authority flag set in its effective
security context. The local user flag is inherited from the parent
process/thread (independent of propagate authority flag), unless overridden
by the /LOCALUSER option in SECURE.SYS. EUF/EGF/EPF are set if any of
the authority flags are set.

Note: Propagate authority flag cannot be inherited from the parent
process/thread, it must be specified by the /PROPAGATE=YES option
in SECURE.SYS.

The default security context inheritance model is that a child process does
not inherit any privileges (authority) from the parent process. A more

122 OS/2 API Security Developers Guide

POSIX-like security context inheritance model is an option that can be
specified in SECURE.SYS for specific programs. This is necessary because
existing OS/2 programs may need to execute with agent process authority
privileges, and these existing programs won′ t set the authority appropriately
in the effective security context before invoking a child process (one of the
pains in moving from an unsecured OS/2 environment to a secured OS/2
environment).

Default Policy Child processes do not inherit agent subject handles or
authority flags from the parent process. This is the
default policy or it can be specified for a program by
the /PROPAGATE=NO option in SECURE.SYS. When a
program with the default inheritance policy specified is
executed, the propagate authority flag will be set to
zero (PAF=0) in the maximum and effective security
contexts of the process.

Note: The state flags (EGF, EPF, EUF, LUF, PAF) are
not affected by this policy. At process creation,
EGF/EPF/EUF will be set if the process has any
authority flags set (APA, SPA, etc.), local user
flag will be inherited from the parent process
unless overridden by the /LOCALUSER option in
SECURE.SYS, and PAF can only be set by the
/PROPAGATE=YES option in SECURE.SYS.

The intent of this option is to enforce the safest
inheritance policy for existing applications that were
not developed as trusted programs, but need to
execute with agent process authority privileges.

Parent Process ==> Child Process

Effective CUH=U1 ==> Maximum and Effective CUH=U1
Effective AUH=U2 ==> Maximum and Effective AUH=U1
Effective CGH=G1 ==> Maximum and Effective CGH=G1
Effective AGH=G2 ==> Maximum and Effective AGH=G1
Effective CPH=P1 ==> Maximum and Effective CPH=P1
Effective APH=P2 ==> Maximum and Effective APH=P1

Effective ACA=X ==> Maximum and Effective ACA=0
Effective APA=Y ==> Maximum and Effective APA=0
Effective CLA=Z ==> Maximum and Effective CLA=0

Chapter 9. SES Architecture Implementation 123

Optional Policy Child processes may inherit agent subject handles and
authority flags from the parent process. This policy
can be specified for a program by the
/PROPAGATE=YES option in SECURE.SYS. When a
program with this optional inheritance policy specified
is executed, the propagate authority flag will be set to
one (PAF=1) in the maximum and effective security
contexts of the process.

Note: The state flags (EGF, EPF, EUF, LUF, PAF) are
not affected by this policy. At process creation,
EGF/EPF/EUF will be set if the process has any
authority flags set (APA, SPA, etc.), local user
flag will be inherited from the parent process
unless overridden by the /LOCALUSER option in
SECURE.SYS, and PAF can only be set by the
/PROPAGATE=YES option in SECURE.SYS.

The intent of this option is to enable an installable
security subsystem to enforce a more POSIX-like
security context inheritance model. For example a
parent process with the propagate authority flag set in
its effective security context can propagate the agent
user/group/process handles and authority flags (APA,
SPA, etc.) in its effective security context to a child
process:

Parent Process ==> Child Process

Effective CUH=U1 ==> Maximum and Effective CUH=U1
Effective AUH=U2 ==> Maximum and Effective AUH=U2
Effective CGH=G1 ==> Maximum and Effective CGH=G1
Effective AGH=G2 ==> Maximum and Effective AGH=G2
Effective CPH=P1 ==> Maximum and Effective CPH=P1
Effective APH=P2 ==> Maximum and Effective APH=P2

Effective ACA=X ==> Maximum and Effective ACA=X
Effective APA=Y ==> Maximum and Effective APA=Y
Effective CLA=Z ==> Maximum and Effective CLA=Z

A process with the propagate authority flag set in its
maximum security context may still control what the
child inherits by setting the process/thread effective
security context authority flags to zero (for authority

124 OS/2 API Security Developers Guide

flags that should not be inherited) before spawning the
child.

Security Context Specified in SECURE.SYS: All authority/state flags can be
specified in SECURE.SYS. Authority flags are specified directly by the
appropriate options (/ACA, /APA, etc.). Propagate authority flag and local
user flags are specified directly via the /PROPAGATE=YES and
/LOCALUSER=YES options. EUF/EGF/EPF are set if any of the authority
flags are set.

Security Context Specified by SLA: In response to a process creation event,
the ISS security daemon (SLA) can potentially modify the maximum effective
security context of a process when it is created. The SLA′s opportunity to
modify the security context of a child process (when it is created) depends on
whether the process is associated with the local system logon session or not.

• Processes associated with the local system logon session

Any process that inherits its security context from SESShell (PM) is
considered to be associated with the local system logon session, for
example, any applications started by the local system logon user. This
includes detached processes that are started from the local system logon
session, but does not include CALL= and RUN= processes that are
started during CONFIG.SYS processing or any offspring of these
processes (even if they are started during a local system logon session).

For processes that are associated with the local system logon session, a
process creation event will be routed to the system logon authority to
modify the security context of a child process when it is created if any
authority flags are specified in SECURE.SYS or are inherited from the
parent process.

• Processes not associated with the local system logon session

Any process that does not inherit its security context from SESShell (PM)
is not considered to be associated with the local system logon session.
This includes OS/2 system processes (such as the hard error daemon),
all CALL= and RUN= processes that are started during CONFIG.SYS
processing, and any offspring of these processes (even if they are started
during a local system logon session).

For processes that are not associated with the local system logon
session, a Process Creation event will be routed to the system logon
authority to modify the security context of a child process when it is
created whether or not any authority flags are specified in SECURE.SYS
or are inherited from the parent process.

Chapter 9. SES Architecture Implementation 125

Note: For processes initiated before the SLA daemon registers to
receive process creation events, the client/agent
user/group/process handles will initially be set to zero. A private
flag in the security context of these processes will be set to
indicate that their subject handles haven′ t been assigned by the
system logon authority yet.

After the system logon authority registers to receive process
creation events, when a process with this private flag set in its
security context requests any services that result in security
enabling services being invoked (for example, the process calls a
security enabling services API, or the process opens a file and the
installable security subsystem security kernel calls a security
enabling services KPI to get the security context of the process).
This private flag will be detected and a process creation event will
be routed to the system logon authority to modify the security
context of the process before the SES API/KPI is allowed to
continue.

If a process creation event is routed to the system logon authority to modify
the security context of a child process when it is created, the system logon
authority can specify the client/agent user/group/process handles and agent
process authority flag in the maximum and effective security contexts, and
can specify EUF/EGF/EPF in the effective security context.

Specified by SLA ==> Child Process

CUH=U1 ==> Maximum CUH=U1, Effective CUH=U1
AUH=U2 ==> Maximum AUH=U2, Effective AUH=U2
CGH=G1 ==> Maximum CGH=G1, Effective CGH=G1
AGH=G2 ==> Maximum AGH=G2, Effective AGH=G2
CPH=P1 ==> Maximum CPH=P1, Effective CPH=P1
APH=P2 ==> Maximum APH=P2, Effective APH=P2

APA=X ==> Maximum APA=X, Effective APA=X

If all SCA flags are set to zero and the SLA specifies APA=0:

EGF=G ==> Maximum EGF=0, Effective EGF=0
EPF=P ==> Maximum EPF=0, Effective EPF=0
EUF=U ==> Maximum EUF=0, Effective EUF=0

If any SCA flags are set to one or the SLA specifies APA=1:

EGF=G ==> Maximum EGF=1, Effective EGF=G
EPF=P ==> Maximum EPF=1, Effective EPF=P

126 OS/2 API Security Developers Guide

EUF=U ==> Maximum EUF=1, Effective EUF=U

Security Context Specified by ISS Security Kernel: In response to a
Pre-ExecPgm callout, the installable security subsystem security kernel can
specify the client/agent user/group/process handles and agent process
authority flag in the maximum and effective security contexts, and can
specify EUF/EGF/EPF in the effective security context.

Specified by ISS ==> Child Process

CUH=U1 ==> Maximum CUH=U1, Effective CUH=U1
AUH=U2 ==> Maximum AUH=U2, Effective AUH=U2
CGH=G1 ==> Maximum CGH=G1, Effective CGH=G1
AGH=G2 ==> Maximum AGH=G2, Effective AGH=G2
CPH=P1 ==> Maximum CPH=P1, Effective CPH=P1
APH=P2 ==> Maximum APH=P2, Effective APH=P2

APA=X ==> Maximum APA=X, Effective APA=X

If all SCA flags are set to zero and the ISS specifies APA=0:

EGF=G ==> Maximum EGF=0, Effective EGF=0
EPF=P ==> Maximum EPF=0, Effective EPF=0
EUF=U ==> Maximum EUF=0, Effective EUF=0

If any SCA flags are set to one or the ISS specifies APA=1:

EGF=G ==> Maximum EGF=1, Effective EGF=G
EPF=P ==> Maximum EPF=1, Effective EPF=P
EUF=U ==> Maximum EUF=1, Effective EUF=U

9.2.3.6 Security Context Modification
The maximum security context of a process (and all threads of a process) is
set at process creation and cannot be modified via the security enabling
services APIs.

The security enabling services APIs can only be used to modify the effective
security context of a process/thread.

All requested modifications to the effective security context of a
process/thread via security enabling services APIs are granted based on the
authority specified in the maximum security context of the requesting
process.

Chapter 9. SES Architecture Implementation 127

Note: The system logon authority is not notified (via a security enabling
services event) of modifications to the effective security context of a
process/thread and, consequently, the system logon authority cannot
control modifications to the effective security context of a
process/thread.

The system logon authority is only notified (via a security enabling
services event) when the maximum and effective security contexts for
a process are being initialized. The system logon authority can
control the maximum security context and initial effective security
context of a process.

9.2.4 SCS Programming Interfaces
Security control services provides an application programming interface
(API) and a kernel programming interface (KPI) to support an installable
security subsystem at the application level (Ring 3) and the kernel level (Ring
0).

9.2.4.1 SCS API
The security control services API is a 32-bit application level interface that
enables security applications (for example, the ISS security daemon) to
invoke security control services functions through the security enabling
services DLL. The following sections provide a high-level representation of
the security control services API.

Context Status Management

SESQueryContextStatus(input=PID; output=ContextStatus)
SESSetContextStatus(input=ContextStatus)

Subject Handle Management

SESCreateHandleNotify(output=SubjectInfo)
SESCreateInstanceHandle(input/output=SubjectHandle)
SESCreateSubjectHandle(input/output=SubjectInfo)
SESDeleteHandleNotify(output=SubjectHandle)
SESDeleteSubjectHandle(input=SubjectHandle)
SESQuerySubjectHandle(input=PID,TargetSubject; output=SubjectHandle)
SESReleaseSubjectHandle(input=TargetSubject,SubjectHandle)
SESReserveSubjectHandle(input=TargetSubject)
SESSetSubjectHandle(input=TargetSubject,SubjectHandle)

Subject Info Management

128 OS/2 API Security Developers Guide

SESQuerySubjectHandleInfo(input=SubjectHandle; output=SubjectInfo)
SESQuerySubjectInfo(input=PID,TargetSubject; output=SubjectInfo)
SESSetSubjectInfo(input=TargetSubject; input/output=SubjectInfo)

Security Context Management

SESQuerySecurityContext(input=PID; output=SecurityContext)
SESResetThreadContext(input=TargetContext)
SESSetSecurityContext(input=SecurityContext)

Inter-Process Communication

SESQueryAuthorityID(input=AuthorityTag; output=AuthorityID)
SESSendSecurityContext(input=AuthorityID,Timeout; input/output=Message,MessageLength)

Process Management

SESControlProcessCreation(input=ActionCode)
SESKillProcess(input=PID)
SESQueryProcessInfo(input=ActionCode,SubjectHandle,ProcessBuf;
input/output=ProcessCount)

Integrity Violation Log

SESlogIntegrityViol(input=logFlag,logData)

9.2.4.2 Security Control Services KPI
The Security Control Services KPI is a 32/16-bit kernel level interface that
enables the Installable Security Subsystem Security kernel to do the
following:

• Invoke security control services functions from Ring-0 (through the
security kernel services security helper services)

• Receive callouts when security control services APIs are invoked
(through the security kernel services security event router)

Note: The callouts for security control services APIs cannot be used to
control access to the services they can only be used to audit the
security control services APIs.

The installable security subsystem security kernel registers for the security
control services callouts and security helpers through the DevHlp_Security
services provided by security kernel services. The DevHlp_Security services
are described in the security kernel services system design section, which
also includes descriptions of the callouts for security control services API
audit. The following sections provide a high-level representation of the
security control services security helpers.

Chapter 9. SES Architecture Implementation 129

Context Status Management

SecHlpQueryAuthorityID(input=PID,TID; output=AuthorityID)
SecHlpQueryContextStatus(input=PID,TID; output=ContextStatus)
SecHlpSetContextStatus(input=PID,TID,ContextStatus)

Subject Handle Management

SecHlpQuerySubjectHandle(input=PID,TID,TargetSubject; output=SubjectHandle)
SecHlpReleaseSubjectHandle(input=AuthorityID,TargetSubject,SubjectHandle)
SecHlpReserveSubjectHandle(input=AuthorityID,TargetSubject,SubjectHandle)
SecHlpSetSubjectHandle(input=PID,TID,TargetSubject,SubjectHandle)

Subject Info Management

SecHlpQuerySubjectHandleInfo(input=SubjectHandle; output=SubjectInfo)
SecHlpQuerySubjectInfo(input=PID,TID,TargetSubject; output=SubjectInfo)

Security Context Management

SecHlpQuerySecurityContext(input=PID,TID; output=SecurityContext)
SecHlpResetThreadContext(input=PID,TID,TargetContext)
SecHlpSetChildSecurityContext(input=SecurityContext)
SecHlpSetSecurityContext(input=PID,TID,SecurityContext)

9.3 Logon Shell Services

Logon shell services enables the many specialized components comprising a
secured OS/2 system to work together. Logon shell services defines
operations such as logon, logoff, lock, and unlock as events, and provides
the function necessary to route the events to participating components. This
is how logon shell services facilitates the perception of a single signon and
enables a consistent user identification and authentication policy.

The simple definition of a logon shell services event is the complete series of
operations and flows that result from a single SESStartEvent() call until the
results are returned to the calling process. The logon shell services events
that can be invoked via SESStartEvent() include the following:

• Logon

130 OS/2 API Security Developers Guide

• Logoff
• Shutdown
• Lock
• Unlock
• Change password
• Create user profile
• Delete user profile
• Identification and authentication

In addition, two of the security context services functions are implemented as
pseudo-events. These pseudo-events are triggered by security control
services functions (documented in the previous section).

• Send security context
• Process creation

Each event requires communication between security enabling services and
the cooperating components (SLA, UIAs, CLAs, SPAs). As the processing of
a logon shell services event proceeds, the participating components are
dispatched to perform various tasks (identification and authentication, logon,
system shutdown, etc.). Each of the participating security components needs
to understand the state of the logon shell services event and what task they
are being asked to perform. This is especially important for security
components that can perform multiple tasks for the same event (for example,
one process of a security component could be an SLA/UIA/CLA and be
dispatched three times for the same local system logon event).

9.3.1 Key Components
The following diagram shows the key components that constitute the logon
shell services state machine and the relevant components of a secured
system.

Chapter 9. SES Architecture Implementation 131

Figure 22. LSS Architecture - Interaction between LSS and Security Applications

The following sections describe these key components and the cooperating
security application components that participate in logon shell services
events.

9.3.1.1 Security Enabling Services Daemons
The security enabling services daemon is the engine for all logon shell
services functions and event flows. It drives a state machine for each event,
coordinating the order and target of each event notification. The PSS
daemon monitors user activity for logon/unlock events and controls the
keyboard/mouse/display when the logon shell services state machine is in
the lock or logoff states. The SESShell daemon starts PM and
initiates/terminates the user shell (for example WPS) for local system logon
sessions.

132 OS/2 API Security Developers Guide

9.3.1.2 User Identification Authority Daemons
The user identification authority daemons have the authority to identify and
authenticate a user for local system logon. A user identification authority
must verify that the users attempting to access the local system are who they
claim to be. For example, users can be authenticated by passwords,
signatures, fingerprints, etc.

9.3.1.3 System Logon Authority Daemon
The system logon authority daemon interacts with logon shell services to
provide the security context for local system logon after identification and
authentication has occurred. After the user identification authorities have
completed identification and authentication the resulting status (for example,
authenticated, not authenticated, guest, error) is passed to the system logon
authority. The system logon authority makes the final decision for local
system logon. For example, even though a user is authenticated by a user
identification authority, the system logon authority might not have the user in
the SLA′s list of authorized users in this case, the system logon authority
might only allow the user to log on as a guest.

9.3.1.4 Client Logon Authority Daemons
The client logon authority daemons can receive notification of local system
events such as logon, logoff, shutdown, and change password. A client
logon authority is also authorized to obtain the password that the user
entered during local system logon. Given the user′s local name and
password (and any additional CLA-specific information about the user, for
example, LAN Server domain and user ID), the client logon authority may be
able to log the user on to remote services without additional intervention by
the user. The objective is to enable transparent identification and
authentication for remote services, thus creating the perception of single
signon.

9.3.1.5 Security Enabling Services Device Driver
The logon shell services component of the SES device driver provides kernel
level services for the security enabling services daemon. These services
control (under the direction of the security enabling services daemon) the
blocking and unblocking of captive threads of the various cooperating
component processes (daemons), and also provide a central point for
transfer of event specific data between processes.

Chapter 9. SES Architecture Implementation 133

9.3.1.6 SES Dynamic Link Library
The security enabling services DLL includes the logon shell services APIs
that are used by an security control authority (such as SLA, CLA, UIA, SPA)
daemon to participate in logon shell services events:

• SESRegisterDaemon
• SESReturnEventStatus
• SESReturnWaitEvent
• SESStartEvent
• SESWaitEvent

9.3.1.7 SLD/CLD/PVD Dynamic Link Libraries
The following additional security enabling services components provide the
policy for logon shell services interaction with user identification authorities,
client logon authorities, and a password validation service during the
processing of logon shell services events.

System Logon Driver (SLD): Determines which user
identification authorities participate
(and in what order) for the logon,
unlock, identification and
authentication, change password,
create user profile and delete user
profile events.

Client Logon Driver (CLD): Determines which client logon
authorities participate (and in what
order) for the logon, logoff, lock,
unlock, change password, create
user profile and delete user profile
events.

Password Validation Driver (PVD): Checks password rules (such as
composition, history, dictionary) for
the change password and create
user profile events.

These drivers are implemented as DLLs that contain the functions invoked by
the security enabling services daemon during the processing of logon shell
services events:

• SLDInit
• SLDQueryUIA
• CLDInit
• CLDQueryCLA
• PVDValidatePassword

134 OS/2 API Security Developers Guide

Security enabling services includes a rudimentary implementation of these
three DLLs; but, these DLLs may be replaced by independent software
vendors or customers to satisfy more complex security requirements.

9.3.1.8 Keyboard/Mouse Device Drivers
The keyboard/mouse device drivers detect inactivity (keystroke or mouse
button) for a specified time period independent of the state of the user
interface services (for example, without regard to which screen group is
active). The keyboard/mouse device drivers support an logon shell services
API that specifies the inactivity time period and blocks (captive thread) until
the device drivers detect inactivity for the specified time period.

The keyboard device driver detects the trusted path key combination
(Ctl-Alt-Del or Ctl-Alt-NumLock-NumLock) independent of the state of the user
interface services (for example, without regard to which screen group is
active). The keyboard device driver supports a callout to the installable
security subsystem security kernel when the trusted path key combination is
detected, and also supports an logon shell services API to control keyboard
monitors so that they cannot intercept keystrokes when the installable
security subsystem is providing trusted path services.

9.3.2 Definition of Local System Logon
The OS/2 user interface services, Presentation Manager (PM) and Workplace
Shell (WPS), are inherently single-user (serial multi-user). Consequently, the
logon shell services definition of local system logon is the association of one
user with the local PM/WPS user interface services.

Note: However, the OS/2 security context services supports concurrent
multi-user operation. For example, one user could access the system
through the local keyboard/mouse/display at the same time that
multiple remote users could access the system through a dial-in
facility.

Prior to local system logon, PM (and the user shell if
RESTARTUSERSHELL=NO) will be associated with the logoff state security
context. The default logoff state security context is:

Client user handle = -1 (unauthenticated user)
Agent user handle = -1
Client group handle = -1
Agent group handle = -1
Client process handle = -1
Agent process handle = -1
Security context status = 0 (all state/authority flags=0)

Chapter 9. SES Architecture Implementation 135

Note: The system logon authority may specify the logoff state security
context when the system logon authority registers with security
enabling services. See logon shell services system design for details.

After local system logon, the security context associated with the local
system logon session (PM process, user shell process, and all untrusted
processes started by the local system user) depends on the logon state:

• Explicit Logon State

After an explicit local system logon, the security context associated with
the local system logon session is established during the logon event:

Client user handle = reserved by SES, specified by SLD/UIAs
Agent user handle = client user handle
Client group handle = specified by the SLA
Agent group handle = client group handle
Client process handle = specified by the SLA
Agent process handle = client process handle
Security context status = LUF (LUF=1, all other state/authority flags=0)

• Auto-Guest Logon State

After an auto-guest local system logon, the security context associated
with the local system logon session is set equal to the auto-guest logon
state security context (see the definition of auto-guest in the next
section). For example, the system logon authority does not establish the
security context for the local system logon session for an auto-guest
logon.

After local system logoff, PM (and the user shell if
RESTARTUSERSHELL=NO) will again be associated with the logoff state
security context.

9.3.3 Definition of a Guest User
Security enabling services configuration includes specification of a subject
name to be associated with the client user handles for all unauthenticated
users. This is referred to as the unauthenticated user name or guest name,
and may be specified by the GUESTNAME environment variable.

The default GUESTNAME is GUEST.

For access control authority, the logon shell services definition of a guest
user is any user whose subject name is the same as the guest name. This
definition of a guest user is sufficient to enable an access control authority to
apply the appropriate access control policy. For example the access control

136 OS/2 API Security Developers Guide

authority doesn′ t need any additional information about the subject handle
associated with a guest user because the access control authority implicitly
accepts the user authentication accomplished by user identification authority
during local system logon (which, for a guest user, probably resulted in no
authentication).

However, this definition of a guest user is not sufficient for client logon
authority because the client logon authority does not implicitly accept the
user authentication accomplished by user identification authorities during
local system logon. Client logon authorities must be able to distinguish one
guest user from another for example each guest user must have a unique
security enabling services subject handle. Consequently, when a user
explicitly logs on as a guest user, a unique client user handle will be created
and the security enabling services subject name associated with the client
user handle will be set to whatever is specified in the GUESTNAME
environment variable.

Note: Client logon authorities are provided the name and token (password)
presented by the local system logon user for identification and
authentication, even if the user is a guest (unauthenticated) user.

• Explicit logon as a guest user

During the normal logon flow, the result of the identification and
authentication process may be that the user is not authenticated, either
because the user identification authorities failed to authenticate the user
or because the user explicitly chose to bypass identification and
authentication by logging on as a guest user. After the authentication
status of the user is determined and this information is provided to the
system logon authority, the system logon authority can allow an
unauthenticated user to explicitly logon as a guest user.

Please note that in the case of an unauthenticated user explicitly logging
on as a guest user, the standard logon process occurs including creation
of a unique security enabling services subject handle for the client user
handle for the guest user even though the security enabling services
subject name associated with the client user handle will still be set to
whatever is specified in the guestname environment variable.

Resulting CUH when a user explicitly logs on as a guest:

Handle = Unique value for each guest user logon session
Name = String specified in GUESTNAME environment variable
Token = Null
Source = 0

Chapter 9. SES Architecture Implementation 137

Consequently, client logon authorities can distinguish one guest user
from another and can associate the appropriate client logon authority
user/group/process credentials with the unique client user handle
created for the guest user.

• Definition of Autoguest

When the auto-guest feature is selected, the entire user identification
authority identification and authentication process is bypassed and the
user shell is started. In this case, the client user handle is set to -1 (the
special security enabling services subject handle reserved for an
unauthenticated user) which is associated with the security enabling
services subject name specified in the guestname environment variable.

Resulting CUH for Auto-guest logon:

Handle = -1
Name = String specified in GUESTNAME environment variable
Token = Null
Source = 0

For an auto-guest logon, the security context returned by the system
logon authority is ignored and the local user logon session security
context is set equal to the auto-guest logon state security context:

Client user handle = -1
Agent user handle = -1
Client group handle = -1
Agent group handle = -1
Client process handle = -1
Agent process handle = -1
Security context status = LUF (LUF=1, all other state/authority flags=0)

Since one auto-guest user cannot be distinguished from another, client
logon authorities should not allow an auto-guest user to logon as a client.
If an auto-guest user attempts to access client logon authority
resources/services, the client logon authority should prompt the user to
explicitly logon (either as an authenticated user or as a guest user).

Note: The installable security subsystem should provide a convenient
user interface to enable an auto-guest user to initiate an explicit
logon (implicit logoff) either as an authenticated user or as an
explicit unauthenticated guest user.

In either case (auto-guest logon or explicit logon as a guest user), the
security enabling services subject name associated with the client user
handle will be the guest name specified in the GUESTNAME environment
variable.

138 OS/2 API Security Developers Guide

9.3.4 Overview of Keyboard/Mouse Support
Logon shell services provides trusted path support, keyboard/mouse activity
detection to instigate logon/unlock events, and keyboard/mouse inactivity
detection to automatically lock the user interface services after a specified
time period.

Figure 23. LSS Architecture - Overview of Keyboard/Mouse Support

Logon shell services works with the keyboard/mouse device drivers to detect
three keyboard/mouse input conditions, independent of the state of the user
interface services (for example, what screen group is active).

• Invocation of the trusted path key combination
• Keyboard/mouse activity (in the logoff and lock states)
• Keyboard/mouse inactivity for a specified period of time

Logon shell services also provides functions that enable the installable
security subsystem security daemon (SLA) to do the following:

• Control keyboard monitors for trusted path services

Chapter 9. SES Architecture Implementation 139

• Monitor keyboard/mouse inactivity for automatic lock services

To exploit the logon shell services trusted path support, the installable
security subsystem needs both Ring-0 (ISS security kernel) and Ring-3 (ISS
security daemon) components. The installable security subsystem security
kernel provides the trusted path callout function, which responds to a trusted
path callout and directs the keyboard device driver to take the appropriate
action. The installable security subsystem security daemon provides trusted
path user interface services (for example, turn off keyboard monitors and
display a security menu) associated Ring-3 logic. To enable the logon shell
services trusted path support, the SET TRUSTEDPATH=YES environment
variable must be specified in CONFIG.SYS.

When the logon shell services trusted path support is not enabled and logon
shell services is either in the logoff state (after local system logoff event,
prior to local system logon event) or in the lock state (after local system lock
event, prior to local system unlock event), logon shell services will take
control of the OS/2 user interface services and monitor keyboard/mouse
input for user activity. When user activity is detected in the logoff/lock states,
logon shell services will initiate a logon/unlock event.

When the installable security subsystem security daemon registers for
keyboard/mouse inactivity detection and specifies the time period, logon
shell services works with the keyboard/mouse device drivers to detect
inactivity regardless of the state of the OS/2 user interface services (for
example what screen group is active). When no keyboard/mouse activity
(keystroke or mouse button) has been detected for the specified time period,
the ISS security daemon will be notified so that it can initiate the appropriate
logon shell services event (typically lock, potentially logoff or shutdown).

9.3.5 LSS Programming Interfaces
Logon shell services provides an Application Programming Interface (API)
and a Kernel Programming Interface (KPI) to support an installable security
subsystem at the application level (Ring 3) and the kernel level (Ring 0).

9.3.5.1 Logon Shell Services API
The logon shell services API is a 32-bit application level interface that
enables security applications (for example, the ISS security daemon) to
invoke logon shell services functions through the security enabling services
DLL. The following sections provide a high-level representation of the logon
shell services API.

140 OS/2 API Security Developers Guide

SES Event Management

SESRegisterDaemon(input=EventList; output=DaemonNumber)
SESReturnEventStatus(input/output=EventInfo)
SESReturnWaitEvent(input=Timeout; input/output=EventInfo)
SESStartEvent(input/output=StartEventInfo)
SESWaitEvent(input=Timeout; input/output=EventInfo)

Keyboard/Mouse Support

SESControlKBDMonitors(input=ActionCode; output=Status)
SESInactivityNotify(input=Timeout)

9.3.5.2 Logon Shell Services KPI
The logon shell services KPI is a 32/16-bit kernel level interface that enables
the installable security subsystem security kernel to do the following:

• Receive callouts for trusted path invocation (through the security kernel
services security event router)

• Receive callouts when logon shell services APIs are invoked (through the
security kernel services security event router)

Note: The callouts for logon shell services APIs cannot be used to
control access to the services they can only be used to audit the
logon shell services APIs.

The installable security subsystem security kernel registers for the logon
shell services callouts through the DevHlp_Security services provided by
security kernel services The DevHlp_Security services are described in the
security kernel services system design section, which also includes
descriptions of the callouts for logon shell services trusted path invocation
and logon shell services API audit.

Chapter 9. SES Architecture Implementation 141

9.4 Installation, Configuration, Initialization Support

The installation, configuration and initialization support architecture
addresses the requirement for secure installation, configuration, and
initialization of security enabling services and an installable security
subsystem.

9.4.1 Installation
The security enabling services facility makes use of some of the OS/2
components (OS2KRNL, DOSCALL1.DLL, PMWP.DLL, NWIAPI.DLL,
MOUSE.SYS, KBD01.SYS, KBD02.SYS). Because SES requires that these
components have been modified to include the necessary enhancements to
support security enabling services, a pre-requisite fixpak level will be
required for some releases of OS/2. For example, for OS/2 Version 2.11,
security enabling services is supported from fixpak XR_B100. This fixpak
was the first fixpak to include the necessary base code modifications for
supporting security enabling services.

The security enabling services installation process will copy several security
enabling services files (SES device driver, SES daemon programs, SES
dynamic link libraries, etc.) to the appropriate drive/directories. However,
the security enabling services installation process will not make the changes
to CONFIG.SYS that are necessary to enable security enabling services.
When a customer installs a security product that requires security enabling
services, the installable security subsystem installation process must include
the appropriate modifications to CONFIG.SYS (and SECURE.SYS) to enable
security enabling services.

9.4.2 Configuration
Configuration of security enabling services (and other necessary security
components such as an installable security subsystem) is accomplished by
modifying two files, CONFIG.SYS and SECURE.SYS, to include the
appropriate information.

Note: Security enabling services does not include configuration APIs or GUI.

142 OS/2 API Security Developers Guide

9.4.2.1 CONFIG.SYS
This section describes the security enabling services environment variables
and SES/ISS components that are defined in the CONFIG.SYS file.

Most of the security enabling services kernel code is implemented as a base
device driver, as is the installable security subsystem security kernel, both of
these base device drivers must be defined in CONFIG.SYS (BASEDEV=).

Security enabling services includes three special programs (SESSTART.EXE,
SESSHELL.EXE, and PSSDMON.EXE) that must be specified in CONFIG.SYS
(CALL=, PROTSHELL=, and RUNWORKPLACE=) so that they are started at
the appropriate time during the initialization (boot) process.

The following environment variables must be defined in CONFIG.SYS to
configure security enabling services:

AUTOGUEST The AUTOGUEST environment variable is used
to enable or disable auto-guest logon. To
enable auto-guest logon, the
AUTOGUEST=YES environment variable must
be specified. If the AUTOGUEST=NO
environment variable is specified or the
AUTOGUEST environment variable is not
specified, auto-guest logon is not enabled.

BACKGROUNDBITMAP The BACKGROUNDBITMAP environment
variable specifies the bit map to be displayed
when no local system user is currently logged
on or the local system user interface is locked.

GUESTNAME The GUESTNAME environment variable defines
the name that is associated with all
unauthenticated users. The default
GUESTNAME is GUEST.

RESTARTUSERSHELL The RESTARTUSERSHELL environment variable
specifies whether the user shell process is
killed/restarted or remains running between
local system logon sessions. The default is
RESTARTUSERSHELL=YES (the user shell
process is restarted at each logon and killed at
each logoff). If RESTARTUSERSHELL=NO is
specified, the user shell is not killed at each
logoff and is not restarted at each logon.

Chapter 9. SES Architecture Implementation 143

SESDBPATH SECURE.SYS, SES.LOG, and the SLD/CLD/PVD
DLLs reside in the directory specified by the
SESDBPATH environment variable.
SESDBPATH must be specified.

TRUSTEDPATH The TRUSTEDPATH environment variable
enables/disables trusted path detection. If
TRUSTEDPATH=YES is specified, SES will not
initiate a logon/unlock event when
keyboard/mouse activity is detected. If
TRUSTEDPATH=NO is specified or the
TRUSTEDPATH environment variable is not
specified, SES will initiate a logon/unlock event
when keyboard/mouse activity is detected.

USERSHELL The USERSHELL environment variable defines
the user interface shell that will be started
when a user logs on. If USERSHELL is not
defined, WPS (PMSHELL.EXE) is the default
user interface shell.

9.4.2.2 SECURE.SYS
Components that require special security enabling services privileges are
defined in SECURE.SYS (system logon authority, user identification authority,
etc.). See the security control services (security context services)
architecture section for a description of security enabling services privileges
and SECURE.SYS configuration.

9.4.3 Initialization
The requirement to ensure that security enabling services and installable
security subsystem components are initialized (and are able to enforce
security policies) prior to allowing a user to logon (and use the workstation)
is addressed by:

• Modifying the following backup system configuration files to control the
security characteristics of the system that is booted when a user types
ALT-F1 during system boot

− \OS2\INSTALL\CONFIG.SYS
− \OS2\INSTALL\OS2.INI
− \OS2\INSTALL\OS2SYS.INI

• Modifying CONFIG.SYS and SECURE.SYS to include the necessary
security characteristics:

144 OS/2 API Security Developers Guide

The required modifications to SECURE.SYS and CONFIG.SYS (original and
backup) are discussed in the system design section.

The OS/2 initialization process is as follows. The OS/2 initialization process
loads all base device drivers and then all device drivers in the order in which
they appear in the CONFIG.SYS file. As a result, the SESDD32.SYS basedev
must appear prior to any other vendor′s base device drivers in the
CONFIG.SYS file. Additionally, for the OS/2 loader to locate basedevs, they
must be located in the root directory of the boot drive or in its OS2
subdirectory. The ISS statements appearing in the CONFIG.SYS file should
be the next DEVICE= and RUN= statements in CONFIG.SYS (after the SES
statements).

After all devices are loaded, the OS/2 initialization process executes the
CALL= and RUN= applications in the CONFIG.SYS file in the order in which
they appear. Applications that are invoked with the CALL= command
execute synchronously (CALL= processes must terminate before OS/2
initialization continues), where as applications that are invoked with the
RUN= command execute asynchronously (OS/2 initialization continues
without waiting for termination of RUN= processes).

SESSTART.EXE must be the first executable application (CALL= or RUN=)
specified in the CONFIG.SYS file and it must be invoked by a CALL=
statement to ensure that the SES daemon (SESDMON.EXE) completes
initialization prior to the start of any other applications. The function of
SESSTART.EXE is merely to start the SES daemon and wait for notification
from it that initialization completed. SESSTART.EXE then terminates, which
allows the OS/2 initialization process to continue. At this point in the
initialization process, the security enabling services are now available.

The recommended method for starting security applications (such as the ISS
security daemon) is via the security configuration file, SECURE.SYS. This file
contains security enabling services configuration information for security
context authority (for example SLA, UIA, CLA) programs. One of the
SECURE.SYS configuration options (/START) specifies that a security control
authority is to be started by security enabling services. This option ensures
that the security control authority is started after PM (so that the security
control authority can use the PM user interface services), but before any user
is allowed to log on.

Chapter 9. SES Architecture Implementation 145

146 OS/2 API Security Developers Guide

Chapter 10. Interoperation of SES and ISS

This section describes how key security enabling services components
cooperate to enable an installable security subsystem to provide operating
system security. For each set of services (SKS, SCS, LSS, ICIS), the
interfaces provided to utilize the services (APIs, KPIs, and/or configuration
requirements, as appropriate for each set of services) are defined and
scenarios are described to demonstrate the flow of control/data.

The following diagram depicts the key security enabling services
components, relevant OS/2 components, and relevant installable security
subsystem (and/or other security application) components:

 Copyright IBM Corp. 1996 147

Figure 24. SES System Design - Interoperation of Key Components

Security Application Components

ACA Daemon: Has the authority to be notified of subject handle
creation/deletion.

APA Process: Has the authority to execute on behalf of a client user and a
trusted agent user.

CLA Daemon: Has the authority to access the name and token (password)
of the local system logon user and to create instance
handles for a client process.

RLA Daemon: Has the authority to create/set subject handles.

148 OS/2 API Security Developers Guide

SLA Daemon: Has the authority to create/set subject handles and establish
the security context for the local system logon user.

SPA Daemon: Has the authority to execute on behalf of multiple client
users and a trusted agent user.

UIA Daemon: Has the authority to identify and authenticate users local
system logon session events.

Installable Security Subsystem (ISS) Components

ISS API: DLL functions that provide an application
programming interface for ISS services.

ISS Security Daemon(s): Ring-3 component(s) of the ISS are SLA, UIA, CLA,
ACA, etc.

ISS Security Kernel: Ring-0 component of the ISS (implemented as an
OS/2 device driver).

ISS Credential Cache: User/group/process credentials associated with
active subject handles (maintained dynamically in
memory for fast access by the ISS).

Security Enabling Services (SES) Components

SES API: DLL functions that provide an application programming
interface for SES.

SES KPI: IDC functions that provide a kernel programming
interface for SES.

SES Daemons: Ring-3 components of SES (SES daemon, PSS daemon,
SESShell daemon).

SES Device Driver: Ring-0 component of SES.

Security Context: Subject handles and status flags associated with a
process/thread.

Subject Info: Name/token maintained by SES for each subject
handle.

SECURE.SYS: Configuration data, primarily for security context
authority.

Chapter 10. Interoperation of SES and ISS 149

OS/2 Operating System Components

File System API: DLL functions to access files and directories.

Note: No changes are required to these APIs.

I/O Device API: DLL functions to access I/O devices.

Note: No changes are required to these APIs.

File System Router: Routes file system requests to the appropriate file
system (FAT or IFS) or I/O device. Requests to an
IFS are directed to the file system′s File System
Driver (FSD). Requests to an I/O device are
directed to the device′s Physical Device Driver
(PDD).

Loader: Loads a program into memory.

Task Manager: Establishes a program as a process in the system.
A Per Task Data Area is allocated for the process
and a Thread Control Block is allocated for each
thread.

Per Task Data Area: Data structure that contains process status
information.

Thread Control Block: Data structure that contains thread status
information, the pointer to a thread′s security
contexts (maximum and effective) are in this
structure.

150 OS/2 API Security Developers Guide

Chapter 11. Security Kernel Services (SKS)

The design of security kernel services must enable an installable security
subsystem security kernel (device driver) to specify the security events which
are of interest to it and receive notification (callouts) when one occurs. In
addition, security kernel services must provide a limited set of services (file
system access and security context services) for the installable security
subsystem security kernel that would otherwise not be available at Ring-0.

Security Kernel Services Installation

The OS/2 components that have been modified to include the necessary
enhancements to support security kernel services (OS2KRNL, MOUSE.SYS,
KBD01.SYS, KBD02.SYS) will be installed as part of the optional OS/2
installation for security enabling services. However, the security enabling
services installation process will not make the changes to CONFIG.SYS that
are necessary to enable/exploit security kernel services, the installable
security subsystem installation process must include the modifications to
CONFIG.SYS to enable/exploit security kernel services (for example,
BASEDEV=).

Security Kernel Services Initialization

The OS/2 system boots normally if an installable security subsystem is not
present. If an installable security subsystem is present, it loads as a base
device driver. Security kernel services is enabled and communication with
the installable security subsystem is established during initialization of the
installable security subsystem device driver. The installable security
subsystem security kernel registers with security kernel services by calling a
new OS/2 device helper function: DevHlp_Security.

 Copyright IBM Corp. 1996 151

Security Kernel Services Performance

The router design produces no measurable slowdown to OS/2 when an
installable security subsystem is not loaded. The non-secured path in the
kernel is optimized, even if it detracts from the performance of the secured
path. Additional code and data is minimized; for example, secured data is
allocated from the heap so that only secured OS/2 is grown. Any security
code that can go in either the OS/2 kernel or the SES/ISS device drivers is
put into the device drivers. Security enabling services code is allocated in
swappable memory where possible (some of the security enabling services
code is not swappable).

11.1 Kernel Callouts Imported from the ISS
An installable security subsystem can call DevHlp_Security to register to
receive callouts for the following:

• Security Relevant OS/2 System Calls
• Callgate Level Support
• Multiple Virtual DOS Machine Support
• Logon Shell Services Trusted Path Support
• Security Enabling Services API Audit Support

11.1.1 Callouts for Security Relevant OS/2 System Calls
The installable security subsystem security kernel (device driver), during its
initialization, makes a DevHlp_Security call to the OS/2 kernel requesting
notification on specific security related events. The installable security
subsystem device driver passes a list of worker or service routines that
correspond to each of the supported security events. When one of those
specified events occurs, the kernel simply calls the appropriate routine. The
installable security subsystem device driver services the notification and
returns with the appropriate status condition for the event.

152 OS/2 API Security Developers Guide

Figure 25. SKS System Design - OS/2 System Call Hooks

11.1.2 Callouts for Callgate Level Support
Callgate level hooks allow an installable security subsystem to receive
notification of events that are not covered by specific callouts for file access,
process creation. Access to the callgate level hooks is divided into the
following categories depending on the type of the OS/2 worker routine to be
hooked:

• 16 bit
• 32 bit

Callgate hooks are enabled when an installable security subsystem provides
an address for the callgate handler routines (either 16 bit, 32 bit, or both) in
the list of imported callouts for the kernel. Once a class (16 bit or 32 bit) is
hooked, all kernel calls for this class are routed to the callgate handler. The
callgate handler is then responsible for calling the OS/2 worker if the call is
allowed to proceed.

Chapter 11. Security Kernel Services (SKS) 153

Figure 26. SKS System Design - OS/2 Callgate Level Hooks

The order of events for a callgate hook are:

Application OS/2 Kernel ISS Device Driver

Call DosXXX Route to callgate stub, which
calls the callgate handler
providing the ordinal number,
worker routine, and pointer to
the user stack.

If valid then call OS/2, else
return RC now.

Do work for DosXXX.
Return RC to callgate stub.

Exit and return RC.
Receives RC from OS/2.

11.1.3 Callouts for Multiple Virtual DOS Machine Support
The Multiple Virtual DOS Machine (MVDM) dispatch table contains the
function code of an MVDM (INT21) request and the address of its worker
routine. The table is pointed to by apDemSvc which can be obtained from
the security export data structure.

Each entry in the MVDM Dispatch Table is a 32-bit flat pointer to a worker
routine. The installable security subsystem device driver can replace this

154 OS/2 API Security Developers Guide

address with the address of its own MVDM handler routine. In this manner,
it can hook any desired function. The handler routine receives a pointer in
EBX to a structure containing the registers at the time the HALT instruction
occurred. To determine what the register-parameter association is at that
time, ISVs can either do some reverse engineering by using the kernel
debugger or contact IBM for information.

ISS Note that these hooks occur after the OS/2 kernel receives the
INT21. This means that a TSR could have hooked the INT21 and
the kernel would not know the difference. For example, some
LAN redirectors hook the INT21 in the DOS box and do not pass
the requests through OS/2 (they take them directly to their virtual
device driver). Therefore, installable security subsystem
developers should also write a virtual device driver (VDD) to
monitor INT21 calls.

The DOS kernel (which handles INT21 calls for a VDM) can make
calls directly to the OS/2 kernel. It can also make calls for which
there is no corresponding DOS interrupt. It is impossible for even
the VDD to catch these calls. Since these calls also bypass the
callgate hooks, a way of hooking them needs to be developed for
completeness.

As with callgate hooks, everything is subject to change. Kernel data
structures and code can be changed in the future, thereby breaking a
previously functioning hook or hooks. It is not recommended that these be
used. The callouts or hooking the INT21 in the VDM are preferable methods.
File system calls from a VDM that are identified as security relevant are
hooked with the callouts.

11.1.4 Callouts for Logon Shell Services Trusted Path Support
When the keyboard device driver receives a Ctrl-Alt-Del or
Ctrl-Alt-Numlock-Numlock it will call the TrustedPathControl() function
provided by the installable security subsystem security kernel.
TrustedPathControl() should return an appropriate value to the keyboard
device driver, which will then take action based on that return code. If an
illegal value is returned, the keyboard device driver will take the action it
normally would have taken (for example reboot, in the case of Ctrl-Alt-Del).

Chapter 11. Security Kernel Services (SKS) 155

11.1.5 Callouts for Security Enabling Services API Audit Support
Callouts are provided for all security control services, APIs so that the
installable security subsystem security kernel can audit these functions.

11.2 Kernel Services Exported to the ISS
An installable security subsystem can call DevHlp_Security to register for the
following security helper functions:

• File System Services
• Security Context Services

11.2.1 Security Helpers for File System Services
The list of security helper functions returned by the DevHlp_Security call
include the following functions to invoke the following OS/2 file system
operations:

• SecHlpChgFilePtr
• SecHlpClose
• SecHlpFindNext
• SecHlpOpen
• SecHlpPathFromSFN
• SecHlpQFileSize
• SecHlpRead
• SecHlpSFFromSFN
• SecHlpWrite

11.2.2 Security Helpers for Security Context Services
The list of security helper functions returned by the DevHlp_Security call
includes functions to invoke security context services. These functions are
discussed in the security context services section.

11.3 Security Kernel Services KPI
Security kernel services provides a new device helper (DevHlp_Security)
function that enables an installable security subsystem security kernel to
register to receive callouts for selected OS/2 kernel events and to invoke
security helper (SecHlp) functions.

The installable security subsystem security kernel uses the DevHlp_Security
function to provide security kernel services with the security import data

156 OS/2 API Security Developers Guide

structure. This structure contains the entry points of functions provided by
the installable security subsystem security kernel for selected callouts.

The installable security subsystem security kernel also uses the
DevHlp_Security function to retrieve from security kernel services the
address of the security export data structure. This structure contains the
entry points of all security helper functions and the MVDM dispatch table
pointer.

On each invocation, DevHlp_Security performs one of these two services
(import or export addresses) as specified by the function code passed in by
the installable security subsystem:

DHSEC_SETIMPORT: Set (input to SKS) list of functions to handle callouts
DHSEC_GETEXPORT: Get (output from SKS) list of exported security helpers

Full details of the security kernel services KPI functions may be found in
Appendix A, “Security Kernel Services KPI Details” on page 239.

11.4 Security Kernel Services Scenarios
The following scenarios are described in this section:

• ISS Security Kernel Initialization
• File System Open Callout

Chapter 11. Security Kernel Services (SKS) 157

11.4.1 ISS Security Kernel Initialization

Figure 27. SKS System Design - ISS Initialization Scenario

 1. To use the security enabling services security helpers, the installable
security subsystem device driver calls DevHlp_Security() with the
DHSEC_GETEXPORT function code, which returns the security export
data structure.

 2. When the installable security subsystem device driver is ready to begin
monitoring security events, it calls DevHlp_Security() with the
DHSEC_SETIMPORT function code, which passes in security import data
structure that contains the installable security subsystem security event
service routine entry points.

158 OS/2 API Security Developers Guide

11.4.2 File System Open Callout

Figure 28. SKS System Design - File Open Callout Scenario

 1. At an OS/2 command prompt, a user attempts to type a file. The TYPE
command generates a DosOpen which is routed to the file system routine
FSD_Open.

 2. If security is enabled, security kernel services makes a callout to the
address of the installable security subsystem device driver routine
supplied for the Open_Pre event in the security import data structure.

 3. The installable security subsystem device driver issues the security
enabling services security helper SecHlpQuerySubjectInfo() to get the
subject handle and user information for the current process/thread.

 4. The installable security subsystem device driver looks up the user
credentials associated with the handle to examine the user′s access
rights to this file.

 5. If the user has access to the file, then Open_Pre returns to security
kernel services with RC=0 and the FSD_Open call continues. If the user
does not have access, then Open_Pre returns with
RC=ERROR_ACCESS_DENIED and the FSD_Open call aborts.

Chapter 11. Security Kernel Services (SKS) 159

160 OS/2 API Security Developers Guide

Chapter 12. Security Context Services (SCS)

This section describes how key security control services components work
together to provide the security context services. The security enabling
services APIs for security control services are defined and scenarios are
provided to show the flow of control/data for several key functions.

12.1 Security Context Authority Roles
To enable multiple security applications to work together, several security
application roles have been defined. Each security role has a specific
responsibility (for example, authenticate a user, establish a security context,
protect a resource, etc.) and a specific set of privileges to invoke the security
enabling services functions that are necessary for it to perform its
responsibilities.

A process can have one or more of security enabling services privileges
associated with it as indicated by the appropriate authority flags in the
security context of the process. A process that has one or more of the
security enabling services authority flags set in its security context. For
example, a process that is performing the responsibilities of one of the
defined security component roles is referred to as a security context
authority.

The following sections describe the security control authority
roles/authorities defined by security enabling services.

12.1.1 Acces Control Authority (ACA)
An access control authority controls access to typically local
resources/services based on the security context established by an
SLA/RLA. When a subject handle is created or deleted by an SLA/RLA, the
access control authority is notified so that it can establish its own set of
credentials that it associates with the user/group/process handle.

 Copyright IBM Corp. 1996 161

For an access control request, an access control authority should query the
subject handles associated with the requesting process/thread and perform
the access control check based on the credentials associated with these
handles such as the ACA should provide process/thread level access control
instead of just assuming that all processes on the system are executing on
behalf of the local system user. This is necessary to support trusted
programs and multi-user applications (for example, dial-in facilities that
support multiple concurrent users).

12.1.2 Agent Process Authority (APA)
One of the key Agent Process Authority (APA) requirements is to enable
existing applications to run as agent programs. For example programs must
be able to execute with agent user/group/process handles that are different
than the client user/group/process handles of the user who invoked the
program without requiring the process to call an security enabling services
function to set its agent process authority flag.

SCS provides the following mechanisms that enable an installable security
subsystem to establish the security context for an agent process authority
during creation of the process:

 1. A program can be specified as an agent process authority in
SECURE.SYS (just like any other security context authority).

When any security control authority (including agent process authority)
specified in SECURE.SYS is invoked, the appropriate security context is
established and a process creation event is initiated when the system
logon authority receives this event, it will be passed the default security
context of the new process (inherited from parent or specified in
SECURE.SYS) and the name of the program that is being executed.

When the system logon authority returns the event status, it can modify
the client/agent user/group/process handles and the APA/EGF/EPF/EUF
flags for the process that is being created.

 2. If an installable security subsystem provides its own mechanisms for
managing agent programs (for example POSIX SETUID function), the
installable security subsystem can hook process creation
(Pre-DosExecPgm) to modify the security context for the process that is
being created.

Prior to the Pre-DosExecPgm callout, security enabling services
temporarily resets the security context pointer in the trusted computing
base of the calling thread (of the parent process) to point to the new
security context being established for the child process. When the

162 OS/2 API Security Developers Guide

installable security subsystem security kernel receives the
Pre-DosExecPgm callout, the security context for the child process has
already been established in accordance with the following:

• The inheritance policy specified by the parent process
• The authority/state flags specified in SECURE.SYS
• The handle/flag modifications specified by the system logon authority

(if appropriate)

When the installable security subsystem security kernel is invoked for the
Pre-DosExecPgm callout, it can modify the client/agent
user/group/process handles and the APA/EGF/EPF/EUF flags for the child
process that is being created by calling the
SecHlpSetChildSecurityContext() KPI.

Note: Since subject handles can′ t be created from a Ring-0 KPI, the
installable security subsystem security kernel must work with the
installable security subsystem security daemon (SLA) to create
whatever client/agent user/group/process handles are appropriate
for the agent process authority program.

One alternative would be to have the installable security
subsystem security daemon make a call into the installable
security subsystem security kernel and block the thread of
execution in the installable security subsystem security kernel
until it needs the installable security subsystem security daemon
to create the subject handles. When this captive thread of the
installable security subsystem security daemon is unblocked, it
can create the appropriate handles and return the values to the
installable security subsystem security kernel.

When the child process is started, it will inherit the security context as
modified by the installable security subsystem security kernel during the
Pre-DosExecPgm callout. Prior to the Post-DosExecPgm callout to the
installable security subsystem security kernel, security enabling services
resets the security context pointer in the trusted computing base of the
calling thread to point back to its own (for example, the parent
process/thread) security context.

12.1.3 Client Logon Authority (CLA)
A client logon authority (CLA) acts as an agent for typically remote
resources/services where the remote server performs its own authentication
of a user. To enable the perception of single signon for the local system
logon, a client logon authority is allowed to access the user name and token

Chapter 12. Security Context Services (SCS) 163

used for local system logon by issuing the SESQuerySubjectInfo() or the
SESQuerySubjectHandleInfo() call.

Some client logon authority services require the client logon authority to
associate multiple sets of user credentials with the same subject handle and
this must be accomplished without affecting any other SCA′s views of its
user credentials that are associated with the same handle.

Security enabling services provides a mechanism to enable a client logon
authority to associate a client logon authority instance handle with a process
(thread) that only has meaning to the client logon authority (all other SCAs
will treat an instance handle exactly the same as the corresponding subject
handle). Client logon authority instance handles can only be created when
implicitly authorized to do so by another process and even then the client
logon authority can only associate these instance handles with the
requesting process (thread). However, please note that these instance
handles will be inherited on process/thread creation just like any other
subject handles and also when an server process authority assumes the
client user/group/process handle of a client process/thread.

In all of the APIs, instance handles have the same functionality as other
subject handles and will come from the same handle space as all subject
handles. Consequently, the client logon authority can treat all handles
exactly the same by managing a subject handle for which it has no instance
handles as the first instance of the handle.

Note: CLAs must not unnecessarily create instance handles, for example,
the only time instance handles should be created is when the client
logon authority security context for the regular handle changes after
the client logon authority security context is established for the
regular handle. This is important because instance handles impact
storage and performance.

CLAs do not delete instance handles. An instance handle is
automatically deleted after it is set into the security context of the
CLA′s client process. For example, when an instance handle is no
longer referenced by the CLA′s client process (or any other process
that inherited an instance handle from the CLA′s client process), the
delete handle notification for the instance handle will proceed.

A client logon authority may associate an instance of a subject handle (for
example, instance handle) with the security context of a client process. It
issues the SESCreateInstanceHandle() call to create an instance handle and

164 OS/2 API Security Developers Guide

the SESReturnEventStatus() call to associate the instance handle with the
client process. The flow is something like the following:

 1. The client logon authority provides a thread for the security enabling
services device driver to communicate with it by the SESWaitEvent() API
this thread is blocked in the security enabling services device driver.

 2. When another process requests some service that causes the client
logon authority SESWaitEvent() thread to become unblocked, the client
logon authority can create instance handles for the effective
user/group/process handles of the client process/thread.

 3. The client logon authority then signals that it is done with this request for
service via the SESReturnEventStatus() API and that it is ready for
another request for service via the SESWaitEvent() API not necessarily in
that order (for example a multi-threaded process could have multiple
SESWaitEvent() threads). One of the options of SESReturnEventStatus()
that is only available to CLAs is to set the instance handles for the client
process/thread.

Note that, although many instance handles can be created for a subject
handle or for other instance handles, each client logon authority can
maintain the heritage of its own instance handles if required.

12.1.4 Remote Logon Authority (RLA)
A remote logon authority (RLA) can establish the security context for typically
remote system users by calling the SESCreateSubjectHandle() API to create
user/group/process handles and by calling either the SESSetSubjectHandle()
or SESSetSecurityContext() API to set the handles in its security context
(which will be inherited by any child processes it creates for the remote
user). A remote system user is defined as a user who is not associated with
the OS/2 PM/WPS user interface services.

An remote logon authority can only set handles that it creates and handle -1
(the handle reserved for unauthenticated users). This policy is important for
the following reasons:

• Each set handle operation (by a remote logon authority) should be
regarded as a separate instance of the security context established at
the root of a process tree. Set handle operations should not be used by
a remote logon authority to impersonate a user (that′s what server
process authority is supposed to be used for).

• We don′ t want applications depending on the superuser remote logon
authority powers to accomplish what could be done with server process
authority or agent process authority. If we don′ t try to limit this

Chapter 12. Security Context Services (SCS) 165

somehow, we ′ ll end up facing all of the same problems UNIX had for so
long with proliferation of superuser powers.

12.1.5 System Logon Authority (SLA)
A system logon authority (SLA) establishes the security context for local
system logon and all processes created through the PM/WPS interfaces by
the local system user. This is accomplished via the logon shell services
event mechanism (see logon shell services system design for more details
on local system logon).

The system logon authority can also establish the security context for other
processes via the SESCreateSubjectHandle() call and SESSetSubjectHandle()
or SESSetSecurityContext() calls.

Security enabling services also enables the system logon authority to
provide trusted program support (for example, POSIX SETUID function) by
allowing it to establish the agent security context of a process as it is started.
The system logon authority is notified once (at process execution) via the
process creation event if the process has any of the authority flags set in its
security context (as inherited from its parent process or as specified in
SECURE.SYS). When the system logon authority receives the process
creation event, the default security context for the process is set in the event
structure.

Programs starting before the system logon authority is active and has
registered for the process creation event (for example, SES, PSS, OS/2
system processes, RUN=processes) will be flagged so that this event will be
instigated the first time the process enters the security enabling services
device driver after the system logon authority has registered.

Note: The system logon authority must provide a security context for
processes started before the system logon authority but the security
context can include all of the handles being set to 0. Note that the
system logon authority is the only security component that can set
handle 0 because the system logon authority is responsible for
enforcing the associated superuser policy if it chooses to do so.
We′re not recommending this policy.

166 OS/2 API Security Developers Guide

12.1.6 Server Process Authority (SPA)
A server process authority (SPA) executes on behalf of multiple clients by
assuming the effective user/group/process handles of the requesting client
process as the client user/group/process handles of one of its threads via
the SESWaitEvent() call. After assuming the handles, the SPA may reserve
these handles for later use by issuing the SESReserveSubjectHandle() call.
This call places the SPA′s client user/group/process handles in a list of
handles that any process/thread of the server process authority (for example,
any process/thread with the same authority ID) is allowed to set in its client
user/group/process handles at some later time.

Note: A thread of a server process authority process is allowed to set the
client user/group/process handles in its effective security context
equal to the handles in its allowed list (created via the
SESReserveSubjectHandle() call) or the handles in the maximum
security context of the server process authority process.

When the handles in the SPA′s list of allowed handles are no longer
required, it can issue the SESReleaseSubjectHandle() call to remove them
from the list.

The process requesting service from the server process authority is not
required to take any explicit action to authorize the server process authority
to assume its effective user/group/process handles; this authorization is
implied by the use of the server process authority services. For example:

• An access control authority such as a database manager might need to
impersonate the credentials of its client processes. It would be allowed
to do this (if it′s also registered as an SPA in SECURE.SYS) when it
receives the security context of a client process via
SESSendSecurityContext().

• A client logon authority such as a distributed computing environment
client program might need to impersonate the credentials of its client
processes. It would be allowed to do this (if it′s also registered as an
server process authority in SECURE.SYS) when it receives notification of
client logon via the logon shell services single signon services.

The flow is something like the following:

 1. The server process authority provides a thread for the security enabling
services device driver to communicate with it by the SESWaitEvent() API.
This thread is blocked in the security enabling services device driver.

 2. When another process requests some service that causes the server
process authority SESWaitEvent() thread to become unblocked, the

Chapter 12. Security Context Services (SCS) 167

effective user/group/process handles of the requesting process will be
copied into the client user/group/process handles of the server process
authority.

Please note that this is not a security exposure (at least not for a
discretionary access control policy) because the server process authority
can choose to be executing on behalf of its agent user/group/process
handles when it calls and returns from SESWaitEvent(). But, after doing
whatever checking it deems appropriate, the server process authority
can choose to execute on behalf of its client user/group/process handles
to impersonate the credentials of the client process/thread.

Also please note that there is no control over what the server process
authority can do with the effective user/group/process handles of the
requesting process/thread for example create other processes/threads
that will inherit these handles. But, again, this is not a security exposure
(at least not for a discretionary access control policy).

 3. The server process authority then signals that it is done with this request
for service via the SESReturnEventStatus() API and that it is ready for
another request for service via the SESWaitEvent() API not necessarily in
that order (for example, a multi-threaded process could have multiple
SESWaitEvent() threads).

The motivation for this policy is to support the principle of least privilege
operation for example give the server process authority enough privilege to
do what it needs to do, but without giving it the essentially unlimited privilege
to execute on behalf of any user (for example, a very powerful user) without
at least the implicit permission of the process requesting service from the
server process authority.

Note: The assumption of the client′s security context by a server process
authority is not allowed on all SESWaitEvent() events. For example,
when a user identification authority is invoked during system logon,
the user has not yet been fully authenticated so, even if the user
identification authority is also an server process authority, it will not
be able to assume the client security context during this operation.

The effect of this policy is to enforce the same privilege model on APAs and
SPAs. For example, an agent or server process can only inherit the security
context a client process when invoked to perform some service for (and on
behalf of) the client process. The key differences between an agent process
authority and server process authority are described in Figure 29 on
page 169.

168 OS/2 API Security Developers Guide

Figure 29. SCS System Design - Trusted Agent/Server Programs

An agent process authority can only execute on behalf of one set of client
user/group/process handles at time.

However, some threads of an agent process authority can be acting on
behalf of its own agent user/group/process handles at the same time that
other threads are acting on behalf of the client.

Consequently, an agent process authority must enforce access control policy
between the threads acting on behalf of the client and the threads acting on
behalf of the agent (since all threads of a process can access objects opened
by any thread of the process).

A server process authority can have threads acting on behalf of multiple sets
of client user/group/process handles at the same time.

In addition, some threads of a server process authority can be acting on
behalf of its own agent user/group/process handles at the same time that
other threads are acting on behalf of clients.

Consequently, a server process authority must enforce access control policy
between the threads acting on behalf of the different clients, and between the
threads acting on behalf of the clients and threads acting on behalf of the
agent (since all threads of a process can access objects of a process can
access objects opened by any thread of the process).

From the viewpoint of the client, the effect is the same and the privilege
model is the same.

Chapter 12. Security Context Services (SCS) 169

12.1.7 User Identification Authority (UIA)
A user identification authority (UIA) performs identification and authentication
of users for local system logon.

To enable the perception of single signon in environments where CLAs
perform their own authentication, the system administrator needs to ensure
that all of the UIAs and CLAs recognize a user by the same security enabling
services subject name (the string name associated with a subject handle). In
addition, the system administrator needs to ensure that each user
identification authority and client logon authority authenticates the user with
the same security enabling services subject token (the string token
(password) associated with a subject handle) and keep these authentication
tokens (passwords) in sync when a password is changed for one of the UIAs
or CLAs.

Regardless of the method used by the user identification authority to identify
and authenticate the user (for example, fingerprint, signature), when a user
identification authority is invoked by security enabling services for
identification and authentication of a local system user and the user is
identified and authenticated, the user identification authority needs to return
the subject name/token to security enabling services that is recognized by
other UIAs, CLAs, ACAs, etc. (even though that may not be the same
information used by the user identification authority to identify and
authenticate the user).

For example, a fingerprint can be used to identify and authenticate the user
in one operation that provides neither the subject name nor subject token,
so, to enable the perception of single signon, the fingerprint user
identification authority would need to be able to return the subject
name/token to security enabling services that is recognized by other UIAs,
CLAs, ACAs, etc. If the user identification authority cannot provide the
common/shared subject name/token, then the perception of single signon
cannot be supported. Note also that, to enable the perception of single
signon, the system administrator needs to establish (and keep in sync) a
common/shared subject name/token for each user for each
UIA/CLA/ACA/etc. on a workstation.

170 OS/2 API Security Developers Guide

12.2 Initialization of Security Context Services
Security control services is initialized, but disabled, when the security
enabling services device driver is loaded during system initialization. The
point in time where the security enabling services device driver is
considered enabled is set when the SLA calls SESRegisterDaemon() for the
Process Creation event. Calls to security enabling services APIs before this
point will return ERROR_SES_DISABLED.

All processes starting before the system logon authority has registered
(when security enabling services is considered disabled) will be associated
with a default security context. They will be assigned handles equal to zero,
and the authority flags will be set as specified in SECURE.SYS or inherited
from the parent process. An unpublished flag will be set in the security
context of all processes started before security enabling services is enabled
to indicate that the system logon authority hasn′ t had the opportunity to
modify the security context yet.

When these processes make their way back through security enabling
services (after the system logon authority has registered for the process
creation event), either by calling a security enabling services API or on
behalf of a request coming through a security enabling services KPI, this flag
will kick off a process creation event to give the system logon authority the
opportunity to modify the security context if appropriate (for example, the
process is not associated with the local system logon session or has at least
one SES authority flag set).

The SECURE.SYS file contains all security context authority programs, for
example, programs with any of the security enabling services authority flags
specified (/SLA, /UIA). Each security control authority program (or set of
programs) specified in SECURE.SYS (except agent process authority) must
have a unique authority tag (/SCA= ′xxxx′, see the installation, configuration,
initialization support system design section for details on SECURE.SYS).

During initialization, each security control authority (except agent process
authority) will be assigned a unique authority ID as specified by the authority
tag in SECURE.SYS. Authority IDs are assigned so that security enabling
services can uniquely identify each security control authority that interacts
with security enabling services through a captive thread mechanism.

Note: One of the requirements of the agent process authority model is to
enable an installable security subsystem to provide POSIX SETUID
function, which implies that the owner (not system administrator) of a
program file can specify that the program executes as a process with

Chapter 12. Security Context Services (SCS) 171

the SETUID (APA) privilege. Consequently, an installable security
subsystem must be able to designate programs as APAs without
necessarily listing the program file in SECURE.SYS (since only a
system administrator should have access to SECURE.SYS, not the
owner of the SETUID (APA) program file).

Consequently, by design, APAs do not need to have an authority ID
assigned because security enabling services does not interact with an
agent process authority (with no other security enabling services
authority) through a captive thread mechanism, and, consequently,
APAs (with no other security enabling services authority) do not need
to be defined in SECURE.SYS.

All authority IDs are assigned from the range of 1 to 255. The following
authority IDs are defined:

Authority ID: Security Context Authority
--

0 : none
1 : SES
2 : PSS
3 : reserved
4 : SLA
5-15 : reserved
16-255 : all other SCAs

Multiple cooperating security control authority programs (processes) can
have the same authority ID so that they can function as a single security
control authority. This is accomplished by associating the cooperating
programs with the same authority tag in SECURE.SYS (/SCA=′xxxx′, see the
installation, configuration, initialization support system design section for
details on SECURE.SYS).

The authority ID assigned to the security control authority is the lowest
authority ID that can be assigned to any of the programs that function as a
single security control authority. For example, if a security control authority
includes programs that need system logon authority, access control
authority, and server process authority privileges, then each
program/process of the security control authority will be assigned authority
ID=4 (the SLA ′s authority ID).

172 OS/2 API Security Developers Guide

12.3 Establishment of Security Context at Process Creation
At process creation, the process security context is established as specified
in SECURE.SYS and/or as inherited from the parent process.

The following are key policies that will be enforced at process creation:

• Client User Handle (CUH):

The child′s maximum (and effective) client user handle is inherited from
the parent′s effective client user handle.

• Agent User Handle (AUH):

If the child program has any authority specified in SECURE.SYS or if the
child process inherits any authority from the parent process, then the
child ′s maximum (and effective) agent user handle can be provided by
the system logon authority via the process creation event.

If the system logon authority doesn′ t provide an agent user handle and if
the parent′s propagate authority flag is set and the child process inherits
any authority from the parent process, then the child′s maximum (and
effective) agent user handle is inherited from the parent′s effective agent
user handle.

If the system logon authority doesn′ t provide an agent user handle and if
the child′s maximum (and effective) agent user handle isn′ t inherited
from the parent′s effective agent user handle, then the child′s maximum
(and effective) agent user handle is inherited from the parent′s effective
client user handle.

• Client Group Handle (CGH):

The child′s maximum (and effective) client group handle is inherited from
the parent′s effective client group handle.

• Agent Group Handle (AGH):

If the child program has any authority specified in SECURE.SYS or if the
child process inherits any authority from the parent process, then the
child ′s maximum (and effective) AGH can be provided by the system
logon authority via the process creation event.

If the system logon authority doesn′ t provide an agent group handle and
if the parent′s propagate authority flag is set and the child process
inherits any authority from the parent process, then the child′s maximum
(and effective) agent group handle is inherited from the parent′s effective
agent group handle.

Chapter 12. Security Context Services (SCS) 173

If the system logon authority doesn′ t provide an agent group handle and
if the child′s maximum (and effective) agent group handle isn′ t inherited
from the parent′s effective agent group handle, then the child′s maximum
(and effective) agent group handle is inherited from the parent′s effective
client group handle.

• Client Process Handle (CPH):

The child′s maximum (and effective) client process handle is inherited
from the parent′s effective client process handle.

• Agent Process Handle (APH):

If the child program has any authority specified in SECURE.SYS or if the
child process inherits any authority from the parent process, then the
child ′s maximum (and effective) agent process handle can be provided
by the system logon authority via the process creation event.

If the system logon authority doesn′ t provide an agent process handle
and if the parent′s propagate authority flag is set and the child process
inherits any authority from the parent process, then the child′s maximum
(and effective) agent process handle is inherited from the parent′s
effective agent process handle.

If the system logon authority doesn′ t provide an agent process handle
and if the child′s maximum (and effective) agent process handle isn′ t
inherited from the parent′s effective agent process handle, then the
child ′s maximum (and effective) agent process handle is inherited from
the parent′s effective client process handle.

• Security Context Status:

− Authority ID:

If the child program has any authority specified in SECURE.SYS
except agent process authority, then the child′s authority ID is
determined by the /SCA= ′xxxxxxxx′ option in SECURE.SYS.

If the child program has no authority or only agent process authority
authority specified in SECURE.SYS but inherits authority other than
agent process authority from the parent process, then the child′s
authority ID is inherited from the parent′s authority ID.

If the child program has no authority or only agent process authority
authority specified in SECURE.SYS and inherits no authority other
than agent process authority from the parent process, then the
child ′s authority ID is set to zero.

− Status Flags:

174 OS/2 API Security Developers Guide

- Effective Group Flag:

The default setting of the flag is based on child′s authority.

If the child process has any authority (if any of the child′s
maximum authority flags are set), then the child′s maximum (and
effective) effective group flag is set.

If the child process has no authority (if none of the child′s
maximum authority flags are set), then the child′s maximum (and
effective) effective group flag is not set.

The effective effective group flag can be reset (EGF=0) by the
system logon authority via the process creation event or by the
installable security subsystem security kernel via the ExecPgm
callout.

- Effective Process Flag:

The default setting of the flag is based on child′s authority.

If the child process has any authority (if any of the child′s
maximum authority flags are set), then the child′s maximum (and
effective) effective process flag is set.

If the child process has no authority (if none of the child′s
maximum authority flags are set), then the child′s maximum (and
effective) effective process flag is not set.

The effective effective process flag be reset (EPF=0) by the
system logon authority via the process creation event or by the
installable security subsystem security kernel via the ExecPgm
callout.

- Effective User Flag:

The default setting of the flag is based on child′s authority.

If the child process has any authority (if any of the child′s
maximum authority flags are set), then the child′s maximum (and
effective) effective user flag is set.

If the child process has no authority (if none of the child′s
maximum authority flags are set), then the child′s maximum (and
effective) effective user flag is not set.

The effective effective user flag can be reset (EUF=0) by the
system logon authority via the process creation event or by the
installable security subsystem security kernel via the ExecPgm
callout.

Chapter 12. Security Context Services (SCS) 175

- Local User Flag:

If the child program has /LOCALUSER=YES specified in
SECURE.SYS, then the child′s maximum (and effective) local user
flag is set.

If the child program has /LOCALUSER=NO specified in
SECURE.SYS, then the child′s maximum (and effective) local user
flag is not set.

If the /LOCALUSER option is not specified in SECURE.SYS, then
the child′s maximum (and effective) local user flag is inherited
from the parent′s effective local user flag.

- Propagate Authority Flag:

If the child program has /PROPAGATE=YES specified in
SECURE.SYS, then the child′s maximum (and effective) propagate
authority flag is set.

If the child program has /PROPAGATE=NO specified in
SECURE.SYS or if the /PROPAGATE option is not specified in
SECURE.SYS, then the child′s maximum (and effective) propagate
authority flag is not set.

− Authority Flags:

If the child program has any authority specified in SECURE.SYS, then
the corresponding authority flags are set in the child′s maximum (and
effective) security context status.

If the parent′s propagate authority flag is set, then the child′s
maximum (and effective) authority flags will be inherited from the
parent ′s effective authority flags (in addition to whatever authority
flags are set as specified in SECURE.SYS). The maximum (and
effective) agent process authority flag can also be set by the system
logon authority via the process creation event or by the installable
security subsystem security kernel via the Pre-ExecPgm callout.

Otherwise, none of the child′s maximum (or effective) authority flags
will be set (indicating that it has no authority).

176 OS/2 API Security Developers Guide

12.4 Association of Security Context with OS/2 IPC
The standard OS/2 IPC services don′ t provide any way for a server process
to obtain the security context of a client process. Consequently, a server
process can exploit the SESSendSecurityContext() call to determine the
security context of a client process that it is communicating with via one of
the standard OS/2 IPC services. This can be accomplished by the server
process associating some unique information with each instance of an OS/2
IPC service (for example a unique session identifier), and then exchanging
this information with the client via a SESSendSecurityContext() call from the
client (so that the client′s security context can be associated with the unique
instance of the OS/2 IPC service).

To use the SESSendSecurityContext() call, the sending process (client) must
know the authority ID of the target security control authority process (server).
The authority ID for each security control authority is defined when security
enabling services is initialized as specified by the authority tag (/SCA=′xxx′)
in SECURE.SYS. The SESQueryAuthorityID() call can be used to obtain the
authority ID for a security control authority given its AuthorityTag (as defined
in SECURE.SYS). Consequently, each security control authority must provide
some way to make either its authority tag or its authority ID known to client
processes that need to communicate with it.

Note: Establishing IPC between clients and servers typically requires
publishing some well known information about the server that clients
can use to establish communication with the server, for example a
well known named pipe.

The same types of well known solutions can be used by an SCA to
make its AuthorityTag or authority ID known to a client process, for
example publishing a well known AuthorityTag or publishing the name
of a well known file that contains the authority ID (which the security
control authority updates during initialization).

Please note that mechanisms used to establish IPC between clients
and servers aren′ t usually exposed to customers, client/server
products typically include client library APIs that hide these
mechanisms. For example, the well known mechanism used to
establish IPC between a client process and a server process could be
hidden in a ConnectToServer() API.

A process that is not an security control authority (for example, it doesn′ t
have any security enabling services authority flags set in its security context)
or a process that is only an agent process authority (for example, it has only

Chapter 12. Security Context Services (SCS) 177

the agent process authority flag set in its security context) cannot be the
target for SESSendSecurityContext() because the authority ID will be set to
zero (AuthorityID=0) in its security context.

Please note that, although SESSendSecurityContext() can be used to
exchange short messages between client/server processes, the primary
intent is to augment (not replace) the standard OS/2 IPC services (for
example, pipes, queues, shared memory, semaphores); and, consequently,
provides very limited IPC function:

• The security context (and short message) can only be sent to a security
control authority.

• The exchanged messages can be at most 512 bytes long.
• No prioritized messages, no typed messages, no peeking.
• The send/receive is always synchronous, for example the target security

control authority must respond before the sender can proceed.

12.5 Security Context Services API
The security context services (SCS) APIs are implemented as part of the
security enabling services DLL, which can be invoked by any process. Use
of the security control services APIs is restricted based upon the effective
authority of the calling thread. The table below indicates the functions
available to each type of authority. If there is insufficient authority for the
call, the function returns with invalid authority. Any returned data is invalid.

Note: Only the security enabling services APIs for security control services
are listed in the following table. Additional security enabling services
APIs for logon shell services are listed in the logon shell services
system design section.

178 OS/2 API Security Developers Guide

SCS Functions SES Authority

UPA APA SPA RLA SLA ACA CLA UIA

SESControlProcessCreation() no no no yes yes no no no
SESCreateHandleNotify() no no no no no yes no no
SESCreateInstanceHandle() no no no no no no yes no
SESCreateSubjectHandle() no no no yes yes no no no
SESDeleteHandleNotify() no no no no no yes no no
SESDeleteSubjectHandle() no no no * 1 * 1 no no no
SESKillProcess() no no no yes yes no no no
SESlogIntegrityViol() * 7 yes yes yes yes yes yes yes
SESQueryAuthorityID() yes yes yes yes yes yes yes yes
SESQueryContextStatus() yes yes yes yes yes yes yes yes
SESQueryProcessInfo() yes yes yes yes yes yes yes yes
SESQuerySecurityContext() yes yes yes yes yes yes yes yes
SESQuerySubjectHandle() yes yes yes yes yes yes yes yes
SESQuerySubjectHandleInfo() * 5 * 5 * 5 * 5 * 5 * 5 yes yes
SESQuerySubjectInfo() * 5 * 5 * 5 * 5 * 5 * 5 yes yes
SESReleaseSubjectHandle() no no yes no no no no no
SESReserveSubjectHandle() no no yes no no no no no
SESResetThreadContext() no yes yes yes yes yes yes yes
SESSendSecurityContext() yes yes yes yes yes yes yes yes
SESSetContextStatus() no yes yes yes yes yes yes yes
SESSetSecurityContext() no no * 6 * 6 * 6 no no no
SESSetSubjectHandle() no no * 2 * 3 * 4 no no
SESSetSubjectInfo() no no no yes yes no no no

NOTES:

(* 1) Can only delete the handles that it creates.

(* 2) A server process authority can set the client handles in its effective
security context to the handles that are in its list of allowed handles or
that are in its maximum security context.

(* 3) An remote logon authority can set the CLIENT/AGENT handles in its
effective security context to the handles that it creates and handle -1.

(* 4) A system logon authority can set the CLIENT/AGENT handles in its
effective security context to any valid handle including 0 and -1.

(* 5) A security control authority without CLA/UIA can only can only query
the name, source, handle, and instance (only a CLA/UIA can query the
token).

Chapter 12. Security Context Services (SCS) 179

(* 6) For setting the handles Note *2 applies to server process authority,
Note *3 to remote logon authority, and Note *4 to SPA. Context status
changes are as for SESSetContextStatus.

(* 7) The installable security subsystem should enforce an access control
policy on the SES.LOG file for example untrusted processes should not
be allowed to access it.

Full details of the security control services API functions may be found in
Appendix B, “Security Context Services (SCS) API Details” on page 241.

12.6 SCS Scenarios
The following scenarios are described in this section:

• A User Logs on Remotely to an Application Server
• An Untrusted Process Creates an Untrusted Child Process
• A Process Sends Its Security Context to an SCA Process
• An SPA Process Acts as Proxy for Its Client Processes

12.6.1 A User Logs on Remotely to an Application Server
The way how a user logs on remotely to an application server is described in
Figure 30 on page 181

180 OS/2 API Security Developers Guide

Figure 30. SCS System Design - Remote Logon Scenario

 1. The installable security subsystem device driver issues the security
device helper call (1) when it initializes in order to request notification
from the security kernel services of security events that are of
importance to it.

 2. An access control authority issues the SESCreateHandleNotify() call (2)
so that it is notified of all new users entering the system.

 3. The remote user initiates a remote logon request by entering a user
name and password (3).

 4. The application server daemon (an remote logon authority) receives the
request and authenticates the user on the local system. If the user was
authenticated, the daemon issues the SESCreateSubjectHandle call using
the user′s name and password as the user information for the handle (4).

Chapter 12. Security Context Services (SCS) 181

 5. The SESCreateHandleNotify call() returns to the access control authority
with the security control services handle and user information for the
user (5).

 6. The access control authority looks up the user ′s credentials, associates
the security control services handle with it, and then sends the data
down to the installable security subsystem device driver so that it can be
cached in Ring 0 memory for fast access (6).

 7. The access control authority then re-issues the SESCreateHandleNotify()
so that it can receive notification of the next user that has entered or
enters onto the system (7).

 8. The daemon now executes the user ′s request to compile a file. It issues
SESResetThreadContext call to reset its effective security context to be a
private copy of security context (contents of the private copy of security
context are copied from the daemon′s maximum security context). The
daemon sets the handles in the new effective security context to the
handles it created for the user by issuing the SESSetSubjectHandle call
(8) a multiple number of times. It sets the authority flags to zero in the
new effective security context (to make it UPA) via SESSetContextStatus
call.

 9. The daemon then executes the compiler program by issuing a
DosExecPgm call (9). The created compiler process inherits the
daemon ′s effective security Ccntext as its maximum security context.

10. The daemon issues SESResetThreadContext call to reset its effective
security context to its maximum security context and therefore re-obtains
its previous security context (for example, old user as subject handles,
remote logon authority). The private copy of security context is deleted
since there is no other reference to it (10).

11. When the compiler process attempts to read a file, the security kernel
services notifies the installable security subsystem device driver via a
PRE-READ callout (11).

12. The installable security subsystem device driver responds by issuing the
SecHlpQuerySubjectHandle call (12).

13. The security enabling services device driver, upon receiving this call
through its KPI, checks the security control services initialization state of
the calling thread and finds that it is initialized. The security control
services handle is returned from the new set of attributes and the
installable security subsystem device driver uses it to locate the user′s
credentials. The user′s access rights to the file are then examined (13).

182 OS/2 API Security Developers Guide

14. If the user has read access to the file, the installable security subsystem
device driver returns to the security kernel services with a return code
indicating no error (14).

15. If the user does not have access, a return code of access denied will be
indicated and the file access is terminated. The security kernel services
passes the received return code back to the file system which in turn
passes it back to the compiler process (15).

12.6.2 An Untrusted Process Creates an Untrusted Child Process
Figure 31 describes how the untrusted process creates an untrusted child.

Figure 31. SCS System Design - Process Creation Scenario

 1. A very common event in a system is the creation of one process, a child
process, by another process, a parent process. The parent process, an
OS/2 Window or command line, prior to creating the child process, an
editor, has the effective security context (which is its maximum security
context) that indicates the user has the authority of UPA (1).

Chapter 12. Security Context Services (SCS) 183

 2. The OS/2 command line, in order to create the editor process, issues the
DosExecPgm call (2).

 3. The child process inherits the parent thread′s effective security context
as its maximum security context. The majority of processes in the
system are of this type and created in this manner (3).

12.6.3 A Process Sends Its Security Context to an SCA Process
Figure 32 shows how security context sends a process to an SCA process.

Figure 32. SCS System Design - Inter-Process Communication Scenario

 1. A security control authority process (except an agent process authority)
provides a thread for the security enabling services device driver to

184 OS/2 API Security Developers Guide

communicate with it by the SESWaitEvent call send security context
event. The thread is blocked in the device driver (1).

 2. Another process needs to send a message with its security context to the
security control authority The process issues the SESQueryAuthorityID
call to retrieve the SCA′s AuthorityID by providing the SCA′s
AuthorityTag defined in the SECURE.SYS. The sending process then
issues the SESSendSecurityContext call to send the message to the
security control authority identified by its AuthorityID (2).

 3. The sending process/thread is blocked until either the message and the
sender ′s effective security context is delivered to the security control
authority or the specified timeout value is exceeded (3).

 4. The SCA′s thread waiting on the SESWaitEvent call for the send security
context event is unblocked and receives the message and the sender′s
security context (4).

 5. The SCA′s thread indicates that it has received (and optionally
processed) the message by issuing the SESReturnEventStatus call with
an optional return message (5).

 6. The sending process/thread which is blocking on the
SESSendSecurityContext call is unblocked by the security enabling
services device driver and receives the return message (6).

Chapter 12. Security Context Services (SCS) 185

12.6.4 An SPA Process Acts As Proxy for Its Client Processes
Figure 33 shows how the SPA process acts as proxy for a client process.

Figure 33. SCS System Design - Trusted Server Process Scenario

 1. A server process authority process provides a thread for the security
enabling services device driver to communicate with it by the
SESWaitEvent for send security context call. The thread is blocked in the
device driver (1).

 2. A client process wants to send a request to server process authority.
The process issues the SESQueryAuthorityID call to retrieve the SPA′s
authority ID by providing the SPA′s AuthorityTag defined in the
SECURE.SYS. The client process then issues the
SESSendSecurityContext call to send the request and its effective

186 OS/2 API Security Developers Guide

security context to the server process authority. The client process is
blocked until the request is delivered to the server process authority (2).

 3. The SPA′s thread waiting on the SESWaitEvent call for the send security
context event is unblocked and receives the request. The effective user
and group handles of the client process is copied into the client user and
group handles of the server process authority by the security enabling
services device driver (3).

 4. The server process authority may add its client user/group/process
handles (for example, its client′s effective handles) to a list of handles
that any process/thread of the SPA′s program group can set as its client
user/group/process handles, by issuing the SESReserveSubjectHandle
and SESSetSubjectHandle calls (4).

 5. The server process authority indicates that it is done with this request for
service by issuing the SESReturnEventStatus call and that it is ready for
another request for service by issuing the SESWaitEvent call (5).

 6. The client process which is blocking on the SESStartEvent call is
unblocked by the security enabling services device driver and receives
the reply (6).

Chapter 12. Security Context Services (SCS) 187

188 OS/2 API Security Developers Guide

Chapter 13. Logon Shell Services (LSS)

The logon shell services are implemented as a state machine triggered by
events that require coordination among various cooperating security
components.

For example, when a user is logging on to the local system, the following
components may be involved:

• Logon shell services (or some other component) starts a logon event.

• The UIAs authenticate the user for local system logon.

• The system logon authority establishes the local security context for the
user and associates the appropriate user/group/process installable
security subsystem credentials (for example user ID, group ID(s), default
access control policy for object creation) with the user′s client
user/group/process handles for the local system logon session.

• The CLAs authenticate the user for remote services that don′ t accept the
local authentication, and associate the appropriate user/group/process
client logon authority credentials with the user′s client
user/group/process handles.

• The ACAs associate the appropriate user/group/process access control
authority credentials with the user′s client user/group/process handles.

• Logon shell services starts the user shell (if RESTARTUSERSHELL=YES)
or associates the user shell with the user′s client user/group/process
handles (if RESTARTUSERSHELL=NO).

 Copyright IBM Corp. 1996 189

13.1 Overview of LSS Event Flows
The following sections provide an overview of selected logon shell services
event flows. Detailed scenarios are provided after the APIs are defined.

13.1.1 Logon/Unlock
Logon is initiated by the SESStartEvent() API. Security enabling services
processes this event and calls the system logon driver to determine which
UIA(s) will participate in identifying and authenticating the user.

Security enabling services reserves a client user handle to associate with the
user ′s name for this event and invokes the user identification authority
specified by the system logon driver. The first user identification authority
typically obtains the user name and password (if available). The user name
and password are propagated by security enabling services to each
subsequent user identification authority. Each user identification authority
will authenticate the user and return the result back to security enabling
services. Security enabling services passes the result of the previous user
identification authority back to the system logon driver, which then decides
whether to invoke the services of another user identification authority or not.

When identification and authentication is complete, the system logon
authority is notified of the final status determined by the system logon driver.
The system logon authority applies its logon policy and returns status to
security enabling services indicating if system logon is to be performed. If
system logon is indicated, the client user handle reserved for local system
logon is created by security enabling services (for example, registered ACAs
will now be notified of the creation of the client user handle), and the client
user/group/process handles specified by the system logon authority (the
client group/process handles must be created by the system logon authority
if they don′ t already exist) will be used by security enabling services to
associate the user with the local system logon session (PM, user shell). This
ensures that all processes executed on behalf of the local user will inherit
the appropriate client user/group/process handles.

Note: At this point in the local system logon flow, security enabling services
will delete the client user handle that it created. This ensures that,
when the user logs off and the handle is no longer referenced by any
process/thread (including an SPA′s list of allowed handles), ACAs will
be notified that the handle has been deleted.

Upon concluding its local logon tasks, security enabling services calls the
client logon driver to determine which CLAs to notify. Security enabling

190 OS/2 API Security Developers Guide

services then notifies each client logon authority of the local system logon,
passing it the user′s name and local password (again, as entered by the user
during local system logon). The client logon authority can attempt to use this
name (or associated CLA-specific information such as user ID, domain) and
password (if the local system password and the CLA′s password are kept in
sync) to authenticate the user without further user intervention, or the client
logon authority can prompt the user for the necessary information (user ID,
domain, password) as necessary.

Next, logon shell services will either start the user shell (if
RESTARTUSERSHELL=YES) or will associate the user shell with the user′s
security context (if RESTARTUSERSHELL=NO).

The final step in the logon process is to return the status to the process
which started the logon operation.

The unlock flow is very similar to the logon flow.

13.1.2 Lock/Logoff/Shutdown
Logoff is controlled through security enabling services. If logoff is initiated,
the first step is to query the system logon authority to determine if a logoff is
appropriate (the user may have inadvertently initiated the logoff, or may have
forgotten that important processes haven′ t completed yet).

Note: The SESQueryProcessInfo() API can be used to get information about
the user′s active processes, which can then be displayed to the user
before prompting for confirmation of the logoff request (same for
shutdown).

Security enabling services then calls the client logon driver to determine
which CLAs to signal that the local system logoff event has occurred.

CLA A client logon authority can log the user off of its remote system
and return with status.

Next, logon shell services will either terminate the user shell (if
RESTARTUSERSHELL=YES) or will associate the user shell with the logoff
state security context (if RESTARTUSERSHELL=NO).

Security enabling services also notifies the system logon authority that the
local system logoff event is in progress.

SLA The system logon authority can then enforce its security policy, for
example terminate all untrusted processes in the system that are
associated with the current system user who is logging off.

Chapter 13. Logon Shell Services (LSS) 191

Security enabling services then associates the PM process with the logoff
state security context.

The lock and shutdown flows are very similar to the logoff flow.

13.1.3 Change Password
If a change password event is initiated, the following information must be
supplied by the calling process:

• Name of user associated with the calling process
• Current password of user associated with the calling process
• Name of target user
• New password for target user

Note: For user′s who are changing their own password, the name of the
user associated with the calling process and the name of the target
user will be the same and the current password will be this user′s
current password.

But, for a system administrator who is changing someone else′s
password, the system administrator′s name will be the one associated
with the calling process and the current password will be the system
administrator ′s password.

The new password will be validated by the password validation driver and
then passed to the UIAs (as determined by the system logon driver) and to
the CLAs (as determined by the client logon driver).

13.2 Overview of Keyboard/Mouse Support
LSS works with the keyboard/mouse device drivers to provide the following:

• Trusted path support
• Keyboard/mouse activity detection
• Keyboard/mouse inactivity detection

13.2.1 Trusted Path Support
Logon shell services modifies the function of the Ctrl-Alt-Del and
Ctrl-Alt-NumLock-NumLock key combinations to support installable security
subsystem trusted path services by enabling the installable security
subsystem security kernel to control the action the keyboard device driver
will take when these trusted path key combinations are detected. In the
absence of an installable security subsystem security kernel, the trusted path

192 OS/2 API Security Developers Guide

key combinations invoke the standard function (for example, reboot for
Ctrl-Alt-Del). The actions the installable security subsystem security kernel
can cause the keyboard device driver to take are:

 1. Perform normal function (for example, reboot for Ctrl-Alt-Del)
 2. Do nothing (remove the keystroke from the input stream)

To enable the trusted path support, the TRUSTEDPATH=YES environment
variable must be specified in CONFIG.SYS.

Note: This stops logon shell services from initiating a logon/unlock events if
keyboard/mouse activity is detected while in the logoff/lock states. If
TRUSTEDPATH=YES is specified, it is the responsibility of the
installable security subsystem trusted path services to initiate the
logon/unlock events.

The flow will be something like the following:

 1. The keyboard device driver detects the trusted path key combination and
notifies the installable security subsystem security kernel via the trusted
path callout.

 2. The installable security subsystem security kernel unblocks a captive
thread of the installable security subsystem security daemon and directs
the keyboard device driver to ignore the trusted path key combination.

 3. The installable security subsystem security daemon takes control of the
OS/2 user interface services (for example, disable keyboard monitors),
presents a trusted path interface to the user (for example, a menu of
options supported by the installable security subsystem), and determines
the appropriate action to take (for example, do nothing, log on, unlock,
shutdown).

13.2.2 Keyboard/Mouse Activity Detection
When the logon shell services state machine is in a logoff/lock state and the
TRUSTEDPATH=YES environment variable is not specified, logon shell
services will do the following:

• Monitor keyboard/mouse input for user activity
• Start a logon/unlock event when user activity is detected

Chapter 13. Logon Shell Services (LSS) 193

13.2.3 Keyboard/Mouse Inactivity Detection
The security enabling services device driver communicates with the
keyboard/mouse device drivers to specify a memory address, the input
activity address, that is used for keyboard/mouse inactivity detection. The
keyboard/mouse device drivers increment the IAA every time they sense
activity (mouse button clicks or keystrokes). The security enabling services
device driver inspects the IAA on a regular basis to detect user inactivity.

The SESInactivityNotify() API enables the installable security subsystem
security daemon (SLA) to specify the inactivity time period and to be notified
of user inactivity after the specified time period. The thread executing this
API is blocked in the security enabling services device driver until user
inactivity is detected. When no keyboard/mouse activity is detected for the
specified time period, the thread will be unblocked and the installable
security subsystem security daemon can take the appropriate action (usually
to initiate a lock event, but perhaps a logoff or shutdown event).

13.3 System Logon Driver API
This section describes the APIs and the parameters that are passed to the
system logon driver. When a logon shell services event occurs for the local
system logon session (such as a local system logon event), the system logon
driver is called to determine which UIAs participate in the event.

The first call to SLDQueryUIA() for an event returns the authority ID of the
first user identification authority that should be invoked for the event.
Subsequent calls to SLDQueryUIA() will pass in the status of the previous
UIA′s response, and will return the authority ID of the next user identification
authority that should be invoked for the event. This process continues until
the system logon driver determines that all target UIAs have been invoked.

The system logon driver indicates that it has determined the final status of
the event by setting the appropriate return code and the final values for the
following:

EventStatus: This field should now be set to the final status that the
system logon driver wants to have passed to the system
logon authority, for example authenticated or
unauthenticated, regardless of the various intermediate
results that each user identification authority returned to
the system logon driver.

194 OS/2 API Security Developers Guide

For example, a system logon driver could query all of the
UIAs and determine the status based on the combined
results of all of the UIAs, some might return
AUTHENTICATED, UNAUTHENTICATED, NOT_AVAILABLE,
etc, but the system logon driver must return the combined
result (authenticated or unauthenticated) on the return for
the final (last one for this event) SLDQueryUIA() call.

AuthoritySource: If the final EventStatus is authenticated, the AuthoritySource
contains the source of authority for the authentication that
the system logon driver wants to have associated with the
client user handle for the user logging on.

In the simplest case, this could be the authority ID of the
single user identification authority that returns an
authenticated status (possible value range 4 to 255). For
more complex policies, the AuthoritySource could represent
an authentication rule number (possible value range 256
and above).

Note that the definition of an authentication rule for the
source of authority associated with a CUH must be
provided by the system logon driver and understood by any
SCAs who want to use it in their policies. For example, an
installable security subsystem that is providing a system
logon driver could also provide a system logon authority
and access control authority that associate, more or less
privileges with a client user handle depending on the
source of authority (authentication rule) associated with it.

The system logon driver DLL may be replaced, for example, as a component
of an independent software vendor security product or customer application.

Note: The default policy for the system logon driver provided with security
enabling services is to process the UIAs in the order they are listed in
SECURE.SYS, and to stop when one user identification authority
returns either authenticated or unauthenticated. If no user
identification authority returns either authenticated or unauthenticated,
then the final status is unauthenticated.

Full details of the system logon driver API may be found in Appendix C,
“System Logon Driver API Details” on page 271.

Chapter 13. Logon Shell Services (LSS) 195

13.4 Client Logon Driver API
This section describes the APIs and the parameters that are passed to the
client logon driver. When a logon shell services event occurs for the local
system logon session (such as a local system logon event), the client logon
driver is called to determine which CLAs participate in the event.

The first call to CLDQueryCLA() for an event returns the authority ID of the
first client logon authority that should be invoked for the event. Subsequent
calls to CLDQueryCLA() will pass in the status of the previous CLA′s
response, and will return the authority ID of the next client logon authority
that should be invoked for the event. This process continues until the client
logon driver determines that all target CLAs have been invoked.

The client logon driver DLL may be replaced, for example as a component of
an independent software vendor security product or customer application.

Note: The default policy for the client logon driver provided with security
enabling services is to process all of the CLAs listed in SECURE.SYS
in the order they are listed. The return codes from the CLAs are
ignored.

Full details of the client logon driver API may be found in Appendix D,
“Client Logon Driver API Details” on page 275.

13.5 Password Validation Driver API
This section describes the API and the parameters that are passed to the
password validation driver. Whenever a password must be validated, (for
example dictionary check, composition rules) the security enabling services
daemon calls this API.

The password validation driver DLL may be replaced, for example as a
component of an independent software vendor security product or customer
application.

Note: The default policy for the password validation driver provided with
security enabling services is to allow any password.

Full details of the password validation driver API may be found in
Appendix E, “Password Validation Driver API Details” on page 279.

196 OS/2 API Security Developers Guide

13.6 Logon Shell Services API
The logon shell services APIs are implemented as part of the security
enabling services DLL, which can be invoked by any process. Use of the
logon shell services APIs is restricted based upon the effective authority of
the calling thread. The table below indicates the functions available to each
type of authority. If there is insufficient authority for the call, the function
returns with invalid authority. Any returned data is invalid.

Note: Only the security enabling services APIs for logon shell services are
listed in the following table. Additional security enabling services
APIs for security control services are listed in the security control
services system design section.

Table 7. Logon Shell Services Functions

Logon Shell Services (LSS)
Functions

SES Authority

UPA APA SPA RLA SLA ACA CLA UIA

SESControlKBDMonitors() no no no no yes no no no
SESInactivityNotify() no no no no yes no no no
SESRegisterDaemon() no no yes yes yes yes yes yes
SESReturnEventStatus() no no yes yes yes yes yes yes
SESReturnWaitEvent() no no yes yes yes yes yes yes
SESStartEvent() * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1
SESWaitEvent() no no yes yes yes yes yes yes

Receiving SES events via SESWaitEvent() or SESReturnWaitEvent()

Change Password no no no no yes no yes yes
Create Profile no no no no yes no yes no
Delete Profile no no no no yes no yes no
Identify and Authenticate no no no no no no no yes
Lock no no no no yes no yes yes
Logoff no no no no yes no yes yes
Logon no no no no yes no yes yes
Process Creation no no no no yes no no no
Send Security Context no no yes yes yes yes yes yes
Shutdown no no no no yes no yes yes
Unlock no no no no yes no yes yes

NOTE:

(* 1) Calling process must have local user flag set to one (LUF=1) in its
effective security context.

Full details of the logon shell services API may be found in Appendix F,
“Logon Shell Services API Details” on page 281.

Chapter 13. Logon Shell Services (LSS) 197

13.7 Logon Shell Services Kernel Programming Interface
The logon shell services kernel programming interfaces enable the
installable security subsystem security kernel to do the following:

• Receive callouts for trusted path invocation (through the SKS security
event router)

• Receive callouts when LSS APIs are invoked (through the SKS security
event router)

13.7.1 Callouts to the ISS Security Kernel for LSS Functions
The callouts for logon shell services functions are described in Chapter 11,
“Security Kernel Services (SKS)” on page 151 and Appendix A, “Security
Kernel Services KPI Details” on page 239.

13.8 Logon Shell Services (LSS) Scenarios
The following scenarios are described in this section:

• Logon
• Unlock
• Logoff, Shutdown
• Lock
• Change User Password
• Create User Profile, Delete User Profile
• Identification and Authentication
• Send Security Context
• Process Creation
• Trusted Path

13.8.1 Logon
The SES_EVENT_LOGON event is called to start a logon procedure for local
system logon. Any process may call this event.

The event may be started with or without information about the user to be
logged on. The event may also be started to log on a guest user or to
initiate an auto-guest logon. Authorities participating in this event should call
SESWaitEvent with the event SES_EVENT_LOGON.

Note that an auto-guest logon can only be initiated by logon shell services.
Also note that the SLD/UIAs are not invoked for an auto-guest logon.

Event Flow

198 OS/2 API Security Developers Guide

 1. SESStartEvent is called to initiate the event.

 2. Logon shell services reserves a client user handle for possible future
allocation. For auto-guest logon, security enabling services will obtain
the guest user name from the environment variable, set the client user
handle to -1 and bypass all UIAs.
Go to step 8.

 3. Logon shell services calls the system logon driver to obtain the identity
of a user identification authority. System logon driver returns the identity
of a user identification authority. For a guest user, the system logon
driver should indicate there are no more UIAs and return a final
authentication status of SES_STATUS_GUEST_USER.

 4. Logon shell services unblocks the SESWaitEvent() call of the specified
user identification authority with a SES_EVENT_LOGON_UIA event.

 5. The user identification authority prompts the user for identification and
authorization information.

 6. After the user identification authority authenticates the user, the user
identification authority calls SESReturnEventStatus() to pass the
authentication results back to logon shell services.

 7. Logon shell services invokes the system logon driver with the status of
the previous user identification authority. Steps (3) through (7) are
repeated until the SLD indicates that no more UIAs need to be notified.
The system logon driver determines the final user authentication status.

 8. LSS unblocks the SESWaitEvent() call for the system logon authority with
a SES_EVENT_LOGON_SLA event and provides the user authentication
status.

 9. The system logon authority specifies (creates if necessary) the
appropriate client group/process handles in the SESReturnEventStatus()
call with a status of SES_STATUS_NO_ERROR.

Logon shell services associates the local system logon session with the
security context established by the system logon authority. The client
user handle must be the subject handle reserved by logon shell services
and passed to the system logon authority as part of the event data. The
agent user/group/process handles are set equal to the client
user/group/process handles. All authority flags and the
EGF/EPF/EUF/PAF flags are set to zero. The local user flag is set to one.

Note: For auto-guest logon, the subject handles returned by the system
logon authority are ignored and all six subject handles (CUH, AUH,
CGH, AGH, CPH, APH) are set to -1.

Chapter 13. Logon Shell Services (LSS) 199

10. Logon shell services calls the client logon driver to obtain the identity of
a client logon authority.

11. Client logon driver returns the identity of a client logon authority.

12. Logon shell services unblocks the SESWaitEvent() call for the specified
client logon authority with an SES_EVENT_LOGON_CLA event.

13. After the client logon authority logs the user on to the remote resource,
the client logon authority calls SESReturnEventStatus(). Steps (10)
through (13) are repeated until the client logon driver indicates that no
more CLAs should be notified.

14. Logon shell services unblocks the SESWaitEvent call for personal shell
services with an SES_EVENT_LOGON event.

15. If RESTARTUSERSHELL=YES, personal shell services notifies SESShell
to start the user shell. Personal shell services then calls
SESReturnEventStatus().

16. LSS unblocks the SESStartEvent() thread completing the LOGON event.

Event Data

UserName - SES subject name
UserNameLen - length of SES subject name
UserToken - SES subject token
UserTokenLen - length of SES subject token
Client User Handle - SES subject handle

Event Data Usage

SESStartEvent

UserName (input) - User name or null if user is not identified.
UserNameLen (input) - Length of user name or 0 if user is not identified.
UserToken (input) - User token or null if the token has not been obtained.
UserTokenLen (input) - Length of token or 0 if the token has not been obtained.
Client User Handle - N/A

SESWaitEvent

UserName (output) - User name or null if user is not identified.
UserNameLen (output) - Length of username or 0 if user is not identified.
UserToken (output) - User token (for example password) or null if the

token has not been obtained.
UserTokenLen (output) - Length of token or 0 if the token has not been

obtained.
Client User Handle (output) - Handle reserved by SES.

SESReturnEventStatus

200 OS/2 API Security Developers Guide

UserName (input) - User name if the UIA obtained the user name of a
previously unidentified user.

UserNameLen (input) - Length of user name if the UIA obtained it for a
previously unidentified user.

UserToken (input) - User token if the UIA obtained a previously
undefined token.

UserTokenLen (input) - Length of token if the UIA obtained a
previously undefined token.

Client User Handle - N/A.

Note: The system logon authority specifies (creates if necessary) the
appropriate client group/process handles in the SecurityContext of the
event structure. The client user handle must be the handle reserved
by logon shell services and passed to the system logon authority as
part of the event data. The agent user/group/process handles are set
equal to the client user/group/process handles.

System Logon Driver Interface

The system logon driver will receive as input Event, Event ID, EventStatus,
Logon Event Data (for example, user name, user token, CUH).

SLDQueryUIA (input) the event status may be null, or it may contain
SES_STATUS_ID_ONLY or SES_STATUS_GUEST_USER. If a logon is initiated
with an event status of SES_STATUS_AUTOGUEST, the system logon driver
will be bypassed. The logon event data may contain null data, user name, or
user name and password.

SLDQueryUIA (output), SLDQueryUIA may either return an authority ID of the
next user identification authority to call, or a return code to indicate there are
no more UIAs. If no more UIAs are left, the event status field will contain the
final status (SES_STATUS_USER_AUTHENTICATED,
SES_STATUS_USER_UNAUTHENTICATED, SES_STATUS_GUEST_USER). If
event status was SES_STATUS_GUEST_USER on input, the system logon
driver should return an event status of SES_STATUS_GUEST_USER and
indicate there are no more UIAs to process. The system logon driver final
event status will be propagated to the system logon authority.

Client Logon Driver Interface

The client logon driver will receive as input Event, Event ID, EventStatus,
Logon Event Data (UserName, UserToken, CUH).

Chapter 13. Logon Shell Services (LSS) 201

CLDQueryCLA (input), the EventStatus may be null, or it may contain
SES_STATUS_GUEST_USER or SES_STATUS_AUTOGUEST. The logon event
data may contain null data, user name, or user name and password.

CLDQueryCLA (output), the client logon driver may either return an authority
ID of the next client logon authority to call, or a return code to indicate there
are no more CLAs. The event status may be null or it may contain
SES_STATUS_GUEST_USER or SES_STATUS_AUTOGUEST. The client logon
driver event status will be propagated to the CLAs.

Event Definitions

SES_EVENT_LOGON_UIA

A user identification authority receives notification of this event when being
asked to identify and/or authenticate a user for system logon. If the user has
not been identified yet, the user identification authority may prompt the user
for identification and authentication data.

If the user is already identified, the user identification authority may just
authenticate or elect to do nothing. The user identification authority may
attempt to change the user name. However, the system logon driver will
determine if a name change will be accepted. The OS/2 system logon driver
will not care if the user name changes.

After the user identification authority has performed identification and/or
authentication, the results are returned to logon shell services in the event
status field via an SESReturnEventStatus (or SESReturnWaitEvent) call.

The eventstatus may be one of the following:

• SES_STATUS_USER_AUTHENTICATED - The user identification authority
authenticated the user. The user name and user token fields are filled in.

• SES_STATUS_USER_UNAUTHENTICATED - The user identification
authority tried, but failed the authentication of the user. User name and
user token are undefined.

• SES_STATUS_NOT_APPLICABLE - The authentication services aren′ t
applicable for the specified user.

• SES_STATUS_NOT_AVAILABLE - The authentication services aren′ t
available (for example the authentication server is not operational).

• SES_STATUS_ID_ONLY - The user identification authority only identified
the user, but did not authenticate the user. User name is filled in.

202 OS/2 API Security Developers Guide

• SES_STATUS_GUEST_USER - The user identification authority has
requested that the user be logged in as guest. The system logon driver
policy will determine if guest logon is supported.

SES_EVENT_LOGON_SLA

The system logon authority will receive this event after the UIAs and system
logon driver have been given the chance to authenticate the user. The
system logon authority will receive the user name and a reserved client user
handle. The system logon authority does not receive the user token. The
event status field contains the final authentication status from the system
logon driver. Although the user identification authority (and system logon
driver) determine if a user has been authenticated, ultimately, the system
logon authority will determine if a user is granted access to a system.

If logon is continued by the system logon authority for an authenticated user,
the system logon authority specifies (creates if necessary) the appropriate
client group/process handles in the SESReturnEventStatus() call with event
status set to SES_STATUS_NO_ERROR. Logon shell services associates the
local system logon session (PM, user shell) with the security context
provided by the system logon authority.

Note: The client user handle must be the handle reserved by logon shell
services and passed to the system logon authority as part of the event
data. Logon shell services sets the agent user/group/process handles
equal to the client user/group/process handles provided by the
system logon authority in the SESEVENT structure. All authority flags
and EUF/EGF/EPF/PAF are set to zero. The local user flag is set to
one.

If the user was not authenticated or not recognized by the system logon
authority, the system logon authority may set event status to
SES_STATUS_GUEST_USER, which causes the normal logon flow except that
the user name associated with the client user handle is set to whatever is
specified in the guest name environment variable (or the default guest
name).

If the user was not authenticated or not recognized by the system logon
authority, the system logon authority may set event status to
SES_STATUS_EVENT_FAILURE. The SESStartEvent returns immediately with
the failure status.

Chapter 13. Logon Shell Services (LSS) 203

SES_EVENT_LOGON_CLA

A client logon authority receives notification of this event after a user has
been identified and authenticated to the local system. The client logon
authority will receive a user name, user token, and CUHandle. At this point,
the client logon authority may perform a remote logon on behalf of the
logged on user.

The event status is ignored.

SES_EVENT_LOGON

Personal shell services gets notified with this event when the user has been
authenticated by the UIAs and approved by the system logon authority.

13.8.2 Unlock
The SES_EVENT_UNLOCK event is similar to SES_EVENT_LOGON. The
UNLOCK event is called to start an unlock procedure for the local system
logon session. Any process may call this event.

Authorities participating in this event should call SESWaitEvent with the event
SES_EVENT_UNLOCK.

Event Flow

 1. SESStartEvent is called to initiate the event.

 2. Logon shell services calls the system logon driver to obtain the identity
of a user identification authority. System logon driver returns the identity
of a user identification authority.

 3. Logon shell services unblocks the SESWaitEvent() call of the specified
user identification authority with an SES_EVENT_UNLOCK_UIA event.

 4. The user identification authority prompts the user for authorization
information.

 5. After the user identification authority authenticates the user, it calls
SESReturnEventStatus() to pass the authentication results back to logon
shell services.

 6. Logon shell services invokes the system logon driver with the status of
the previous user identification authority. Steps (2) through (6) are
repeated until the system logon driver indicates that no more UIAs need
to be notified. The system logon driver determines the final user
authentication status.

204 OS/2 API Security Developers Guide

 7. Logon shell services unblocks the SESWaitEvent() call for the system
logon authority with an SES_EVENT_UNLOCK_SLA event and provides
the user authentication status.

 8. Logon shell services calls the client logon driver to obtain the identity of
a client logon authority.

 9. Client logon driver returns the identity of a client logon authority.

10. Logon shell services unblocks the SESWaitEvent() call for the specified
client logon authority with an SES_EVENT_UNLOCK_CLA event.

11. After the client logon authority processes the event, the client logon
authority calls SESReturnEventStatus(). Steps (8) through (11) are
repeated until the client logon driver indicates that no more CLAs should
be notified.

12. Logon shell services unblocks the SESWaitEvent call for PSS with a
SES_EVENT_UNLOCK event.

13. Personal shell services calls SESReturnEventStatus().

14. Logon shell services unblocks the SESStartEvent() thread completing the
UNLOCK event.

Event Data

UserToken - SES subject token
UserTokenLen - length of SES subject token

Note: The user name that will be used for authentication by UIAs or for user
identification authority selection by the system logon driver will be the
currently logged on user.

Event Data Usage

SESStartEvent

UserToken (input) - User token or null if the token has not been obtained.
UserTokenLen (input) - User token length or 0 if the token has not been obtained.

SESWaitEvent

UserToken (output) - User token or null if the token has not been obtained.
UserTokenLen (output) - User token length or 0 if the token has not been obtained.

SESReturnEventStatus

UserToken (input) - User token if the UIA obtained a previously undefined token.
UserTokenLen (input) - User token length if the UIA obtained a previously undefined

token.

System Logon Driver Interface

Chapter 13. Logon Shell Services (LSS) 205

The system logon driver will receive as input Event, Event ID, EventStatus,
Unlock Event Data (user token).

SLDQueryUIA (input), the event status may be null, or it may contain
SES_STATUS_GUEST_USER, or the event status will contain the status of the
previous user identification authority (SES_STATUS_USER_AUTHENTICATED,
SES_STATUS_NOT_APPLICABLE, SES_STATUS_NOT_AVAILABLE,
SES_STATUS_USER_UNAUTHENTICATED, SES_STATUS_GUEST_USER).

The unlock event data may contain null data or a token.

SLDQueryUIA (output), the system logon driver may either return an authority
ID of the next user identification authority to call, or a return code to indicate
there are no more UIAs. If no more UIAs are left, the event status field will
contain the final status (SES_STATUS_USER_AUTHENTICATED,
SES_STATUS_USER_UNAUTHENTICATED, SES_STATUS_GUEST_USER). The
system logon driver final event status will be propagated to the system logon
authority.

Client Logon Driver Interface

The client logon driver will receive as input Event, Event ID, EventStatus,
Unlock Event Data (user token).

CLDQueryCLA (input), the event status may be null, or it may contain
SES_STATUS_GUEST_USER. The Unlock Event Data may contain null data or
a password.

CLDQueryCLA (output), the client logon driver may either return an authority
ID of the next client logon authority to call, or a return code to indicate there
are no more CLAs. The event status may be null or it may contain
SES_STATUS_GUEST_USER. The client logon driver event status will be
propagated to the CLAs.

Event Definitions

SES_EVENT_UNLOCK_UIA

A user identification authority receives notification of this event when being
asked to authenticate a user for unlock. If the token (password) has not been
obtained, the user identification authority may prompt the user for
authentication data.

206 OS/2 API Security Developers Guide

After the user identification authority has performed authentication, the
results are returned to logon shell services in the event status field via an
SESReturnEventStatus call.

The event status may be one of the following:

• SES_STATUS_USER_AUTHENTICATED - The user identification authority
authenticated the user. The user name and user token fields are filled in.

• SES_STATUS_USER_UNAUTHENTICATED - The user identification
authority tried, but failed the authentication of the user. User name and
user token are undefined.

• SES_STATUS_NOT_APPLICABLE - The authentication services aren′ t
applicable for the specified user.

• SES_STATUS_NOT_AVAILABLE - The authentication services aren′ t
available (for example the authentication server is not operational).

• SES_STATUS_ID_ONLY - The user identification authority only identified
the user, but did not authenticate the user. User name is filled in.

• SES_STATUS_GUEST_USER - The user identification authority may not
return this status unless the current system logon user is a guest.

SES_EVENT_UNLOCK_CLA

A client logon authority gets this event to be informed that the user is
unlocking the local system logon session. If the current local system logon
user is a guest, the client logon authority may wish to re-authenticate the
user.

The event status is ignored.

SES_EVENT_UNLOCK_SLA

The system logon authority will receive this event after the UIAs and system
logon driver have been given the chance to authenticate the user. The event
status field contains the final authentication status from the system logon
driver. Although the user identification authority (and system logon driver)
determine if a user has been authenticated, ultimately, the system logon
authority will determine if the user is granted access to the system.

If the user was not authenticated, the event status should be set to
SES_STATUS_EVENT_FAILURE. The SESStartEvent is returned to
immediately with the failure status.

Chapter 13. Logon Shell Services (LSS) 207

SES_EVENT_UNLOCK

Personal shell services gets notified with this event when the user has been
authenticated by the UIAs and approved by the system logon authority.
Personal shell services must remove the lock up bit map at this time.

13.8.3 Logoff, Shutdown
The SES_EVENT_LOGOFF and SES_EVENT_SHUTDOWN events are similar.
Logoff is used as the example in this section, with differences noted for
shutdown where appropriate.

These events are called to start a logoff or a shutdown procedure. Any
process may call these events.

Authorities participating in these events should call SESWaitEvent with the
event SES_EVENT_LOGOFF or SES_EVENT_SHUTDOWN.

Event Flow

 1. SESStartEvent is called to initiate the event. The process initiating the
event is blocked until event completion.

 2. Logon shell services unblocks the SESWaitEvent() call for the system
logon authority to query whether the user is authorized to perform the
specified event.

 3. The system logon authority calls SESReturnEventStatus() to indicate
whether the user is authorized to perform the specified event.

 4. Logon shell services calls the client logon driver to obtain the identity of
a client logon authority.

 5. The client logon driver returns the identity of a client logon authority.

 6. Logon shell services unblocks the SESWaitEvent() call for the specified
client logon authority with the SES_EVENT_LOGOFF_CLA event.

 7. After the client logon authority processes the event (for example, logs the
user off of a remote server), the client logon authority calls
SESReturnEventStatus() to indicate that logon shell services can
continue.

 8. Logon shell services repeats steps (4) through (7) for subsequent CLAs
until the client logon driver indicates that no more CLAs need to be
notified.

 9. Logon shell services unblocks the SESWaitEvent() call for the system
logon authority.

208 OS/2 API Security Developers Guide

10. The system logon authority processes this event and calls
SESReturnEventStatus. For a logoff, the system logon authority may
terminate all processes running on behalf of the current user. For a
shutdown, the system logon authority may perform a system shutdown
and display a shutdown message.

11. Logon shell services unblocks the SESWaitEvent() call for the personal
shell services.

12. If RESTARTUSERSHELL=YES, personal shell services notifies SESShell
to terminate the user shell. Personal shell services then calls
SESReturnEventStatus().

13. Logon shell services associates PM and the user shell (if active) with the
logoff state security context. Logon shell services then unblocks the
application that started the event (which indicates that the event is
complete).

Event Data

There is no event specific data for this event.

Event Data Usage

Client Logon Driver Interface

The client logon driver will receive as input Event, Event ID.

The client logon driver will return an authority ID of the next client logon
authority to call, or a return code to indicate there are no more CLAs.

Event Definitions

SES_EVENT_LOGOFF_CLA

SES_EVENT_SHUTDOWN_CLA

A client logon authority gets this message when the user is logging off or
shutting down the system. For a logoff or shutdown event, the client logon
authority should detach the user from remote resources.

SES_EVENT_LOGOFF_SLA

SES_EVENT_SHUTDOWN_SLA

Chapter 13. Logon Shell Services (LSS) 209

For a LOGOFF event the SLA should terminate all processes running on
behalf of the local user. For a shutdown event, the system logon authority
should perform the actual system shutdown when receiving this message.
The system logon authority is responsible at this time to display a pending
shutdown message.

SES_EVENT_LOGOFF_QUERY

SES_EVENT_SHUTDOWN_QUERY

The system logon authority receives this message to approve the pending
event. If the user is to be queried for confirmation of the event, the system
logon authority should perform the query after receiving this message.

SES_EVENT_LOGOFF

SES_EVENT_SHUTDOWN

Personal shell services gets notified with this event when the user is about to
be logged off or the system is shutting down. Shutdown implies a logoff.
Personal shell services is responsible for shutting down the user shell in this
case. Personal shell services should manage the screen at this point and
display the logoff bit map.

13.8.4 Lock
The SES_EVENT_LOCK event is called to start a lock procedure. Any
process may call these events.

Authorities participating in these events should call SESWaitEvent with the
event SES_EVENT_LOCK.

Event Flow

 1. SESStartEvent is called to initiate the event. The process initiating the
event is blocked until event completion.

 2. Logon shell services unblocks the SESWaitEvent() call for the system
logon authority to query whether the user is authorized to perform the
specified event.

 3. The system logon authority calls SESReturnEventStatus() to indicate
whether the user is authorized to perform the specified event.

 4. Logon shell services calls the client logon driver to obtain the identity of
a client logon authority.

210 OS/2 API Security Developers Guide

 5. The client logon driver returns the identity of a client logon authority.

 6. Logon shell services unblocks the SESWaitEvent() call for the specified
client logon authority with the SES_EVENT_LOCK_CLA event.

 7. After the client logon authority processes the event (for example logs the
user off of a remote server), the client logon authority calls
SESReturnEventStatus() to indicate that logon shell services can
continue.

 8. Logon shell services repeats steps (4) through (7) for subsequent CLAs
until the client logon driver indicates that no more CLAs need to be
notified.

 9. Logon shell services unblocks the SESWaitEvent() call for the system
logon authority.

10. The system logon authority processes this event and calls
SESReturnEventStatus.

11. Logon shell services unblocks the SESWaitEvent() call for the personal
shell services.

12. Personal shell services processes this event and calls
SESReturnEventStatus().

13. Logon shell services unblocks the application that started the event
(which indicates that the event is complete).

Event Data

There is no event specific data for this event.

Event Data Usage

Client Logon Driver Interface

The client logon driver will receive as input Event, Event ID.

The client logon driver will return an authority ID of the next client logon
authority to call, or a return code to indicate there are no more CLAs.

Event Definitions

SES_EVENT_LOCK_CLA

A client logon authority gets this message when the user is locking the
system.

Chapter 13. Logon Shell Services (LSS) 211

SES_EVENT_LOCK_SLA

A system logon authority gets this message when the user is locking the
system.

SES_EVENT_LOCK_QUERY

The system logon authority receives this message to approve the pending
event. If the user is to be queried for confirmation of the event, the system
logon authority should perform the query after receiving this message.

SES_EVENT_LOCK

Personal shell services gets notified of this event when the system is about
to go into a locked state. Personal shell services should manage the screen
at this point and display the locked bit map.

13.8.5 Change Password
The SES_EVENT_CHANGE_PASSWORD event is provided to facilitate
password synchronization among multiple cooperating components.

This event supports of the following situations:

• A user changes her/his own password. In this case, the user making the
change and the target user are the same (and the name of the user can
be obtained from the security context), so the user would typically be
prompted only for the old password and the new password (twice for
confirmation).

• A system administrator changes the password for another user. In this
case, the user making the change is different from the target user, so the
system administrator would typically be prompted for the target user′s
name, the system administrator′s password (not the target user′s old
password), and the target user′s new password (twice for confirmation).

Authorities participating in this event should call SESWaitEvent with the event
SES_EVENT_CHANGE_PASSWORD.

Event Flow

 1. SESStartEvent is called to initiate the event, with the current and new
passwords.

 2. Logon shell services calls the password validation driver to validate the
new password.

212 OS/2 API Security Developers Guide

 3. The password validation driver validates the password and returns the
status to logon shell services.

 4. Logon shell services calls the system logon driver to obtain the identity
of a user identification authority.

 5. The system logon driver returns the identity of a user identification
authority.

 6. Logon shell services unblocks the SESWaitEvent() call for the specified
user identification authority.

 7. After the user identification authority processes the event, the user
identification authority calls SESReturnEventStatus() to indicate that logon
shell services can continue.

 8. Logon shell services repeats steps (4) through (7) for subsequent UIAs
until the system logon driver indicates that no more UIAs need to be
notified.

 9. Logon shell servicescalls the client logon driver to obtain the identity of a
client logon authority.

10. The client logon driver returns the identity of a client logon authority.

11. LSS unblocks the SESWaitEvent() call for the specified client logon
authority.

12. After the client logon authority processes the event, the client logon
authority calls SESReturnEventStatus() to indicate that logon shell
services can continue.

13. Logon shell services repeats steps (9) through (12) for subsequent CLAs
until the client logon driver indicates that no more CLAs need to be
notified.

14. Logon shell services unblocks the application that started the event
completing the flow.

Event Data

ChangerName - name of user making the password change
(standard SES user name format)

ChangerNameLen - length of ChangerName
ChangerPassword - password of user making the password change
ChangerPasswordLen - length of ChangerPassword
UserName - name of target user
UserNameLen - length of UserName
UserPassword - new password for target user
UserPasswordLen - length of UserPassword

Chapter 13. Logon Shell Services (LSS) 213

Event Data Usage

SESStartEvent

ChangerName (input) - The name of the user making the password change.
ChangerNameLen (input) - The name length of the user making the password change.
ChangerPassword (input) - The password of the user making the password change.
ChangerPasswordLen (input) - The password length of the user making the password

change.
UserName (input) - The target user name.

Note: This name will match the ChangerName for a user changing their own
password.

UserNameLen (input) - The target user name length.
UserPasswordSecret (input) - The target user′ s new password.
UserPasswordLen (input) - The target user′ s new password length

SESWaitEvent

ChangerName (output) - The name of the user making the password change.
ChangerNameLen (output) - The name length of the user making the password change.
ChangerPassword (output) - The password of the user making the password change.
ChangerPasswordLen (output) - The password length of the user making the password

change.
UserName (output) - The target user name.

Note: This name will match the ChangerName for a user changing their own
password.

UserNameLen (output) - The target user name length.
UserPassword (output) - The target user′ s new password.
UserPasswordLen (output) - The target user′ s new password length

SESReturnEventStatus

N/A

System Logon Driver Interface

The system logon driver will receive as input Event, Event ID, Change
Password Event Data (ChangerName Name, ChangerPassword, UserName,
UserPassword).

The system logon driver will return an authority ID of the next user
identification authority to call, or a return code to indicate there are no more
UIAs.

Client Logon Driver Interface

214 OS/2 API Security Developers Guide

The client logon driver will receive as input Event, Event ID, Change
Password Event Data (ChangerName Name, ChangerPassword, UserName,
UserPassword).

The client logon driver will return an authority ID of the next client logon
authority to call, or a return code to indicate there are no more CLAs.

Password Validation Driver Interface

The password validation driver will receive as input Change Password Event
Data (ChangerName Name, ChangerPassword, UserName, UserPassword).

The password validation driver will return a return code of SES_NO_ERROR
or SES_EVENT_FAILURE.

Event Definitions

SES_EVENT_CHANGE_PASSWORD

The change password event is received by UIAs and CLAs waiting on this
event.

The event status is ignored.

13.8.6 Create User Profile, Delete User Profile
The SES_EVENT_CREATE_PROFILE and SES_EVENT_DELETE_PROFILE events
are similar so they are discussed as one. The text CREATE will be used in
this discussion.

Create user profile is called when a new user is to be added to the system.
SCAs waiting on this event may perform any new user processing as
necessary.

Delete user profile is called when a user is to be deleted from system. SCAs
waiting on this event may perform any delete processing as necessary.

Authorities participating in this event should call SESWaitEvent with the event
SES_EVENT_CREATE_PROFILE or SES_EVENT_DELETE_PROFILE.

Event Flow

 1. SESStartEvent is called to initiate the event.

 2. Logon shell services calls the system logon authority to notify of the
event.

Chapter 13. Logon Shell Services (LSS) 215

 3. System logon authority processes the event, calls SESReturnEventStatus.

 4. Logon shell services calls the system logon driver to obtain the identity
of a user identification authority.

 5. The system logon driver returns the identity of a user identification
authority.

 6. Logon shell services unblocks the SESWaitEvent() call for the specified
user identification authority.

 7. After the user identification authority processes the event, the user
identification authority calls SESReturnEventStatus() to indicate that logon
shell services can continue.

 8. Logon shell services repeats steps (4) through (7) for subsequent UIAs
until the system logon driver indicates that no more UIAs need to be
notified.

 9. Logon shell services calls the client logon driver to obtain the identity of
a client logon authority.

10. The client logon driver returns the identity of a client logon authority.

11. Logon shell services unblocks the SESWaitEvent() call for the specified
client logon authority.

12. After the client logon authority processes the event, the client logon
authority calls SESReturnEventStatus() to indicate that logon shell
services can continue.

13. Logon shell services repeats steps (9) through (12) for subsequent CLAs
until the client logon driver indicates that no more CLAs need to be
notified.

14. Logon shell services unblocks the application that started the event
completing the flow.

Event Data

UserName - name of user associated with new profile (standard SES UserName format)
UserNameLen - length of user name

Event Data Usage

SESStartEvent

UserName (input) - Name of new user.
UserNameLen (input) - Name length of new user.

SESWaitEvent

216 OS/2 API Security Developers Guide

UserName (output) - Name of new user.
UserNameLen (output) - Name length of new user.

SESReturnEventStatus

N/A

System Logon Driver Interface

The system logon driver will receive as input Event, Event ID, Create/Delete
User Profile Event Data (UserName).

The system logon driverwill return an authority ID of the next user
identification authority to call, or a return code to indicate there are no more
UIAs.

Client Logon Driver Interface

The client logon driver will receive as input Event, Event ID, Create/Delete
User Profile Event Data (UserName).

The client logon driver will return an authority ID of the next client logon
authority to call, or a return code to indicate there are no more CLAs.

Event Definitions

SES_EVENT_CREATE_PROFILE

SES_EVENT_DELETE_PROFILE

The system logon authority, all UIAs, and all CLAs registered to receive
these events will be notified when these events are invoked (and can then
take the appropriate action, for example creating/deleting user profiles in
their own databases).

13.8.7 Identification and Authentication
The SES_EVENT_IA event may be invoked when a user needs to be
authenticated for purposes other than local system logon/unlock, for example
when a second signature is required for a banking transaction.

The identification and authentication event has no affect on the state of the
local system logon session.

Chapter 13. Logon Shell Services (LSS) 217

Authorities participating in this event should call SESWaitEvent with the event
SES_EVENT_IA.

Event Flow

 1. Event is initiated by SESStartEvent.

 2. Logon shell services calls the system logon driver to obtain the identity
of a user identification authority.

 3. System logon driver returns the identity of a user identification authority.

 4. Logon shell services unblocks the SESWaitEvent() call of the specified
user identification authority.

 5. After the user identification authority authenticates the user, it calls
SESReturnEventStatus() to pass the authentication results back to logon
shell services.

 6. Logon shell services invokes the system logon driver with the status of
the previous user identification authority. Steps 2 through 6 are repeated
until the system logon driver indicates that no more UIAs need to be
notified. The system logon driver determines the final user
authentication status.

 7. Logon shell services unblocks the application that called SESStartEvent()
indicating that the event is complete. The return code will indicate if the
user was authenticated or not authenticated.

Event Data

UserName - SES user name
UserNameLen - SES user name length.
UserToken - SES token
UserTokenLen - SES token length

Event Data Usage

SESStartEvent

UserName (input) - User name or null.
UserNameLength (input) - User name length or null.
UserToken (input) - User token or null.
UserTokenLen (input) - User token length or null.

SESWaitEvent

218 OS/2 API Security Developers Guide

UserName (output) - User name or null if the user has not been identified.
UserNameLength (output) - User name length or null if the user has not been

identified.
UserToken (output) - User token or null if the token has not been obtained.
UserTokenLen (output) - User token length or null if the token has not been

obtained.

SESReturnEventStatus

UserName (input) - User name or null if user has not been identified.
UserNameLen (input) - User name length or null if user has not been identified.
UserToken (input) - User token or null if token has not been obtained.
UserTokenLen (input) - User token length or null if token has not been obtained.

System Logon Driver Interface

The system logon driver will receive as input Event, Event ID, EventStatus,
Logon Event Data (for example, user name, user token).

SLDQueryUIA (input), the IA event data may contain the user name and
Password. The event status may contain the status of the previous user
identification authority if it is not the first call.

SLDQueryUIA (output), the system logon driver may either return an authority
ID of the next user identification authority to call, or a return code to indicate
there are no more UIAs. If no more UIAs are left, the event status field will
contain the final status (SES_STATUS_USER_AUTHENTICATED,
SES_STATUS_USER_UNAUTHENTICATED).

Event Definitions

SES_EVENT_IA

A user identification authority receives notification of this event when being
asked to identify and/or authenticate a user for an identification and
authentication. If the user has not been identified yet, the user identification
authority may prompt the user for identification and authentication data. If
the user is already identified, the user identification authority may just
authenticate or elect to do nothing.

After the user identification authority has performed identification and/or
authentication, the results are returned to logon shell services in the event
status field via an SESReturnEventStatus call.

The event status may be one of the following:

Chapter 13. Logon Shell Services (LSS) 219

• SES_STATUS_USER_AUTHENTICATED - The user identification authority
authenticated the user. The user name and user token fields are filled in.

• SES_STATUS_USER_UNAUTHENTICATED - The user identification
authority tried, but failed the authentication of the user. User name and
user token are undefined.

• SES_STATUS_NOT_APPLICABLE - The authentication services aren′ t
applicable for the specified user.

• SES_STATUS_NOT_AVAILABLE - The authentication services aren′ t
available (for example the authentication server is not operational).

• SES_STATUS_ID_ONLY - The user identification authority only identified
the user, but did not authenticate the user. User name is filled in.

13.8.8 Send Security Context
The SES_EVENT_SEND_SECURITY_CONTEXT event is called to send a
message, with the effective security context of the sending thread, to an
security control authority. The send security context event is triggered by a
call to SESSendSecurityContext().

Event Flow

 1. An security control authority calls SESWaitEvent specifying
SES_EVENT_SEND_SECURITY_CONTEXT.

 2. A program calls SESSendSecurityContext() with the authority ID of the
target SCA.

 3. Logon shell services unblocks the SESWaitEvent() call of the target
security control authority. (Note: If the security control authority has
server process authority, the security control authority will be associated
wit h the effective security context of the calling thread when it
unblocks).

 4. The security control authority calls SESReturnEventStatus().

 5. Logon shell services unblocks the SESSendSecurityContext() thread
completing the SEND SECURITY CONTEXT event.

Event Data

Message - Pointer to message buffer.
MessageLength - Length of message
Authority ID - Target SCA authority ID

Event Data Usage

220 OS/2 API Security Developers Guide

SESWaitEvent

Message (input) - Pointer to message buffer.
MessageLength (output) - Length of message.
Authority ID - N/A

SESReturnEventStatus

Message (input) - Pointer to return message buffer.
MessageLength (input) - Length of return message.
Authority ID - N/A

Event Definitions

See Chapter 12, “Security Context Services (SCS)” on page 161 for a
complete description of this event.

13.8.9 Process Creation
The SES_EVENT_PROCESS_CREATION event is triggered by security
enabling services when a new security control authority (or a process that is
not associated with the local system logon session) is created. Only the
system logon authority may wait on the process creation event. The system
logon authority receives the program name from the event data.

The system logon authority may set (create if necessary) the client/agent
user/group/process handles and agent process authority flag in the
maximum and effective security contexts, and set/clear EUF/EGF/EPF in the
effective security context.

Note: For most processes started by users, the expected policy is that the
child process will inherit its client user/group/process handles from
the parent process. However, for processes that are not started by a
user (for example, jobs scheduled to run periodically by a system
administrator), the child process may not inherit its client
user/group/process handles from the parent process.

Event Flow

 1. The system logon authority calls SESWaitEvent() specifying
SES_EVENT_PROCESS_CREATION.

 2. Security enabling services generates a
SES_EVENT_PROCESS_CREATION event when a new authority process is
created.

 3. Logon shell services unblocks the system logon authority thread waiting
on the SES_EVENT_PROCESS_CREATION event.

Chapter 13. Logon Shell Services (LSS) 221

 4. The system logon authority may set (create if necessary) the client/agent
user/group/process handles, and set/clear the EUF, EGF, EPF, and APA
flags.

 5. The system logon authority calls SESReturnEventStatus() with the
security context of the requesting authority.

 6. Logon shell services unblocks the security enabling services thread
completing the SES_EVENT_PROCESS_CREATION event.

Event Data

ProgramName - Path name of program file for newly created process.
CUH - Client User Handle
AUH - Agent User Handle
CGH - Client Group Handle
AGH - Agent Group Handle
CPH - Client Process Handle
APH - Agent Process Handle
SCS - Security Context Status

Event Data Usage

SESWaitEvent

ProgramName (output) - Path name of program file for newly created process.
CUH (output) - Inherited from parent′ s CUH.
AUH (output) - Inherited from parent′ s CUH or AUH as specified by

parent′ s PAF.
CGH (output) - Inherited from parent′ s CUH.
AGH (output) - Inherited from parent′ s CUH or AUH as specified by

parent′ s PAF.
CPH (output) - Inherited from parent′ s CUH.
APH (output) - Inherited from parent′ s CUH or AUH as specified by

parent′ s PAF.
SCS (output) - Specified in SECURE.SYS or inherited from parent′ s

SCS as specified by parent′ s PAF.

SESReturnEventStatus

ProgramName - N/A
CUH (input) - Specified by SLA.
AUH (input) - Specified by SLA.
CGH (input) - Specified by SLA.
AGH (input) - Specified by SLA.
CPH (input) - Specified by SLA.
APH (input) - Specified by SLA.
SCS (input) - Specified by SLA (only EUF, EGF, EPF, and APA flags may be

set/cleared).

222 OS/2 API Security Developers Guide

Event Definitions

Refer to Chapter 12, “Security Context Services (SCS)” on page 161 for a
complete description of this event.

13.8.10 Trusted Path
The trusted path callout to the installable security subsystem security kernel
is triggered by the local system user typing Ctrl-Alt-Del (or
Ctrl-Alt-NumLock-NumLock). The installable security subsystem security
kernel can work with the ISS security daemon to control keyboard/mouse
input, thereby providing a trusted path for the local system user to invoke
installable security subsystem security services (for example, logon).

 1. CONFIG.SYS contains the following line: SET TRUSTEDPATH=YES.

 2. The installable security subsystem security kernel calls DevHlp_Security
with the function code DHSEC_SETIMPORT and provides the address of
its TRUSTEDPATHCONTROL function.

 3. The installable security subsystem security daemon (which is providing
the trusted path services in this example) calls a private API supported
by the installable security subsystem security kernel and is blocked in
the installable security subsystem security kernel.

 4. A Ctrl-Alt-Del is hit. The keyboard device driver invokes the installable
security subsystem security kernel TRUSTEDPATHCONTROL function.

 5. TRUSTEDPATHCONTROL unblocks the installable security subsystem
security daemon′s trusted path thread and returns an instruction to the
keyboard device driver not to reboot.

 6. The installable security subsystem trusted path application turns off
keyboard monitors (via the SESControlKBDMonitors() API) and then
invokes its trusted path logic (for example, initiates a logon event).

 7. After the trusted path logic processing is complete, the installable
security subsystem trusted path application turns keyboard monitors
back on and then calls back into the installable security subsystem
security kernel to wait for another Ctrl-Alt-Del.

Chapter 13. Logon Shell Services (LSS) 223

224 OS/2 API Security Developers Guide

Chapter 14. Installation, Configuration, Initialization Support

The following sections discuss the system design for the installation,
configuration, and initialization support.

14.1 Installation
The security enabling services facility makes use of some of the OS/2
components (OS2KRNL, DOSCALL1.DLL, PMWP.DLL, NWIAPI.DLL,
MOUSE.SYS, KBD01.SYS, KBD02.SYS). Because security enabling services
requires that these components have been modified to include the necessary
enhancements to support security enabling services, a pre-requisite fixpak
level will be required for some releases of OS/2.

For example, for OS/2 Version 2.11, security enabling services is supported
from fixpak XR_B100. This fixpak was the first fixpak to include the
necessary base code modifications for supporting security enabling services.

The security enabling services installation process will copy several security
enabling services files (security enabling services device driver, security
enabling services daemon programs, security enabling services dynamic link
libraries, etc.) to the appropriate drive/directories. For OS/2 Version 2.11,
these security specific files are available in fixpak XR_BSES.

Note: The security enabling services installation process will not make the
changes to CONFIG.SYS that are necessary to enable security
enabling services. When a customer installs a security product (ISS)
that requires security enabling services, the installable security
subsystem installation process must include the modifications to
CONFIG.SYS (and SECURE.SYS) to enable security enabling services.

 Copyright IBM Corp. 1996 225

14.2 Configuration
The following sections describe the necessary modifications to CONFIG.SYS
and SECURE.SYS to enable security enabling services, an installable security
subsystem, and other security-related components.

14.2.1 CONFIG.SYS
The required modifications for CONFIG.SYS and the backup
\OS2\INSTALL\CONFIG.SYS file are as follows. The example statements
must appear first in these system configuration files to properly initialize the
security enabling components.

 REM *************** BEGIN SECURITY SUBSYSTEM REQUIREMENTS ***************
 REM
 REM The additions/modifications to CONFIG.SYS to install SES should
 REM be inserted at the beginning of CONFIG.SYS. The order of the
 REM statements within this block should be preserved.
 REM In this example, ′ C:′ is the boot drive.

 REM To activate the SES device driver:
 BASEDEV=SESDD32.SYS

 REM To activate the ISS device driver:
 BASEDEV=ISSDD32.SYS

 REM To activate the SES daemon (must be the first CALL= statement):
 CALL=C:\OS2\SECURITY\SES\SESSTART.EXE C:\OS2\SECURITY\SES\SESDMON.EXE

 REM The PROTSHELL argument is a standard OS/2 CONFIG.SYS entry. It will
 REM appear in CONFIG.SYS whether SES is enabled or not. To enable SES,
 REM the original PROTSHELL statement must be replaced with the following:
 PROTSHELL=C:\OS2\SECURITY\SES\SESSHELL.EXE

 REM The RUNWORKPLACE environment variable is a standard OS/2 CONFIG.SYS
 REM entry. It will appear in CONFIG.SYS whether SES is enabled or not.
 REM To enable SES, the original RUNWORKPLACE statement must be replaced
 REM with the following:
 SET RUNWORKPLACE=C:\OS2\SECURITY\SES\PSSDMON.EXE

 REM The SESDBPATH environment variable specifies the location of SES.LOG,
 REM SECURE.SYS, and the SLD/CLD/PVD DLLs. SESDBPATH must be specified.
 SET SESDBPATH=C:\OS2\SECURITY\SESDB

 REM The AUTOGUEST environment variable enables/disables auto-guest logon.
 SET AUTOGUEST=NO

226 OS/2 API Security Developers Guide

 REM The GUESTNAME environment variable defines the guest user id.
 SET GUESTNAME=GUEST

 REM The TRUSTEDPATH environment enables/disables trusted path detection.
 SET TRUSTEDPATH=NO

 REM The USERSHELL environment variable defines the user shell.
 SET USERSHELL=C:\OS2\PMSHELL.EXE

 REM The RESTARTUSERSHELL environment variable specifies the user shell
 REM restart option.
 SET RESTARTUSERSHELL=YES

 REM The BACKGROUNDBITMAP environment variable specifies what bitmap is to
 REM be displayed when no local system user is currently logged on or when
 REM the local system user interface is locked.
 SET BACKGROUNDBITMAP=C:\BITMAP\CUSTOMER.BMP

 REM **************** END SECURITY SUBSYSTEM REQUIREMENTS ****************

14.2.2 SECURE.SYS
SECURE.SYS contains all security context authority (SCA) programs that
need to be registered with security enabling services. An security control
authority is a program/process that has any of the security enabling services
authority flags set.

Note: Only a system administrator should have access to the SECURE.SYS
file (like any other file that is part of the trusted computing base, for
example CONFIG.SYS, device drivers, file system handlers, OS/2
kernel). An installable security subsystem must enforce this policy or
the security of the system is exposed.

Each security control authority (except agent process authority) is specified
in SECURE.SYS with a unique authority tag (/SCA=″xxxx″). During
initialization, each security control authority will be assigned a unique
authority ID as specified by the authority tag in SECURE.SYS. Multiple
cooperating SCA programs/processes can have the same authority ID to act
as a single security control authority. This is accomplished by associating
the cooperating programs/processes with the same authority tag
(/ S C A = ″xxxx″) in SECURE.SYS.

The SECURE.SYS file is written in the following format:

• Comment lines must begin with a semi-colon in column 1.

Chapter 14. Installation, Configuration, Initialization Support 227

• Command lines must begin in column 1 and appear as follows (″X:″
indicates the boot drive):

X:\Path\...\Filename.Ext /SCA=′ Auth Tag′ [/APA] [/SPA] [/RLA] ...
... [/SLA] [/ACA] [/CLA] [/UIA] [/PSS] [/SES] ...
... [/START] [/PROPAGATE=YES/NO] [/LOCALUSER=YES/NO]

• If a line begins improperly with a blank, /, or any other invalid file
specification character, the line is ignored.

• The tags have the following definitions:

/ S C A = ″Auth Tag″ Identifies the authority tag associated with
a program/process. The /SCA= tag can be
any printable ASCII string with a maximum
of 8 characters. The /SCA= tag is used to
identify an security control authority
program/process (except an agent process
authority) and is also used to enable
multiple programs/processes to act as a
single security control authority. All
security control authority
programs/processes (except an agent
process authority) need to define a /SCA=
tag. All SCA programs/processes that
need to act as a single SCA must define the
same /SCA= tag.

/ACA Identifies the program/process as an ACA.

/APA Identifies the program/process as an APA.

/CLA Identifies the program/process as a CLA.

/PSS Identifies the program/process as the PSS
daemon.

/RLA Identifies the program/process as an RLA.

/SES Identifies the program/process as the SES
daemon.

/SLA Identifies the program/process as the SLA.

/SPA Identifies the program/process as an SPA.

/UIA Identifies the program/process as a UIA.

/LOCALUSER=YES|NO Indicates whether the program/process can
communicate with the local system logon
user through PM/WPS interfaces or not.

228 OS/2 API Security Developers Guide

The default is inherited from the parent
process, but this flag overrides the default.

/PROPAGATE=YES|NO Allows the program/process to specify the
inheritance policy for a child process. The
default is no (for example, the
program/process can not specify the
inheritance policy for a child process).

/START Indicates that the program should be
started by security enabling services during
initialization. The default is that security
enabling services will not start the
program.

Note: Programs with /START are started
after PM is initialized.

• A fully qualified file name (drive, path, and file name with extension) must
be specified otherwise the line is ignored.

• Only files with .COM or .EXE file extension can be specified otherwise the
line is ignored.

• If no options are specified, the line is ignored since the authority for the
program is indeterminate.

• If an invalid or unknown option is specified, the line is ignored.

• If one type of option appears multiple times on a line, the line is ignored.

• At least one program must specify the SES option. If not, SES does not
initialize. This is an unrecoverable condition.

• At least one program must specify the PSS option. If not, SES does not
initialize. This is an unrecoverable condition.

• At least one program must specify the SLA option. If not, SES does not
initialize. This is an unrecoverable condition.

• A maximum of 244 unique /SCA= tags can be specified in SECURE.SYS.

• A fully qualified file name may appear only once. Lines with the same
fully qualified file name are considered duplicate lines. Only the last
duplicate line is accepted. All other duplicate lines are ignored.

Following is an example of a SECURE.SYS file:

Chapter 14. Installation, Configuration, Initialization Support 229

SES definition
 C:\OS2\SECURITY\SES\SESDMON.EXE /SCA=′ SES′ /SES

 PSS definition
 C:\OS2\SECURITY\SES\PSSDMON.EXE /SCA=′ PSS′ /PSS
 C:\OS2\SECURITY\SES\SESSHELL.EXE /SCA=′ PSS′ /PSS

 SLA definition
 C:\OS2\SECURITY\SES\SLA.EXE /SCA=′ SLA′ /SLA /START

Single program defined with multiple authorities
 C:\OS2\SECURITY\SES\XXX.EXE /SCA=′ XXX′ /UIA /CLA /SPA

Set of programs defined as the same SCA
 C:\OS2\SECURITY\SES\YYY1.EXE /SCA=′ YYY′ /CLA /LOCALUSER=YES
 C:\OS2\SECURITY\SES\YYY2.EXE /SCA=′ YYY′ /SPA /LOCALUSER=NO

APA definition (authority tag is not specified)
C:\OS2\SECURITY\SES\ZZZ.EXE /APA /PROPAGATE=YES

If a developer produced a program, for example SESMON, to monitor
process-user associations under security enabling services, this program
would be given the appropriate security control services status through the
SECURE.SYS file. Whether or not SESMON would be able to monitor the
associations would depend upon the authority it is given in the SECURE.SYS
file.

For example, if SESMON.EXE is executed from the directory C:\SESMON,
adding the following line to SECURE.SYS would give it system logon
authority.

C:\SESMON\SESMON.EXE /SCA=′ sla′ /SLA

14.3 Initialization
The initialization process is considered to have the following distinct phases:

Phase 1: In phase 1, the system has been powered on or rebooted. This
phase can be interrupted and made potentially insecure should
the user hit ALT-F1 during the system boot. This keystroke
combination replaces the currently active system configuration
files with copies of the files that existed at the time of OS/2
installation. These replacement files are CONFIG.SYS, OS2.INI
and OS2SYS.INI and can be found in the \OS2\INSTALL
subdirectory. For secure installations, these files must be

230 OS/2 API Security Developers Guide

replaced with files that will provide a secure environment. To
facilitate recovery, it is recommended that the system
configuration established by these replacement files fulfill only the
minimum functional requirements of the system. For example,
these files could force the system into a state that requires a
system administrator to logon.

Assuming that the process is not interrupted, initialization
continues loading device drivers called out in CONFIG.SYS,
including any installable security subsystem device drivers. Next,
it reaches the point when programs listed in CONFIG.SYS with
RUN= and CALL= statements are executed.

Phase 2: During phase 2, the SES daemon is started by SESSTART (which
is the first CALL= or RUN= statement in CONFIG.SYS), the
security enabling services daemon waits to receive notification
that PM is enabled from SESSHELL.

Phase 3: During phase 3, the program specified on the PROTSHELL
statement of CONFIG.SYS (SESSHELL) is executed by the system
initialization process. SESSHELL creates the system message
queue for PM and notifies the security enabling services daemon
that PM is enabled. SESSHELL then reads the SECURE.SYS file
and starts all security control authority programs (SLA, UIA, CLA,
etc.) with the /START option specified.

Phase 4: In phase 4, the system is now in a steady state, ready to process
security enabling services events or respond to security enabling
services APIs/KPIs. For example, the personal shell services
daemon is waiting for keyboard/mouse activity to initiate a logon
event.

An installable security subsystem typically includes several security
daemons (SLA, UIA, ACA, etc.) and a security kernel (device driver). These
components must be initialized to enforce security policy prior to allowing a
user to logon.

• The installable security subsystem security kernel (device driver) is
defined in CONFIG.SYS and is initialized when the device driver is loaded
during the processing of CONFIG.SYS.

• An access control authority calls the SESCreateHandleNotify() and
SESDeleteHandleNotify() APIs to register for notification of the
creation/deletion of security enabling services subject handles.

• All other security daemons call the SESRegisterDaemon() API to register
for notification of security enabling services events via the

Chapter 14. Installation, Configuration, Initialization Support 231

SESWaitEvent() API. This allows the daemon to participate in SES
events, for example the system logon authority can be notified when
processes are created to provide trusted program support, UIAs can be
notified when a user needs to be authenticated so that they can provide
the authentication services, etc.

The following system initialization example shows how/when key security
relevant processes are started (as specified in CONFIG.SYS and
SECURE.SYS).

SAMPLE CONFIG.SYS STATEMENTS FOR SES and ISS
--
call=c:\os2\security\ses\sesstart.exe
call=c:\os2\security\ses\sla_0.exe
protshell=c:\os2\security\ses\sesshell.exe
set runworkplace=c:\os2\security\ses\pssdmon.exe
set usershell=c:\os2\pmshell.exe

SAMPLE SECURE.SYS STATEMENTS FOR SES and ISS
--
c:\os2\security\ses\sesdmon.exe /sca=′ ses′ /ses
c:\os2\security\ses\pssdmon.exe /sca=′ pss′ /pss
c:\os2\security\ses\sesshell.exe /sca=′ pss′ /pss
c:\os2\security\ses\sla_1.exe /sca=′ sla′ /sla
c:\os2\security\ses\sla_2.exe /sca=′ sla′ /sla /start

232 OS/2 API Security Developers Guide

Figure 34. ICIS System Design - Example of SES and ISS Initialization

Chapter 14. Installation, Configuration, Initialization Support 233

234 OS/2 API Security Developers Guide

Part 3. Appendices

 Copyright IBM Corp. 1996 235

236 OS/2 API Security Developers Guide

Chapter 15. KPI and API Calls

About This Part

Part 1, “Developer′s Guide” on page 1 and Part 2, “Design Notes” on
page 79 provided the background information and detail of security
enabling services (SES) and how to build a installable security subsystem
(ISS). This section provides information on the actual API calls provided,
the error codes, and some details of known customer requirements for
workstation security products.

15.1 Chapter Breakdown
This appendices section contains details of all the Security Enabling Services
APIs that are currently provided by IBM for each of the Security Enabling
Services components.

The chapters in this part are:

• Appendix A, “Security Kernel Services KPI Details”

This chapter provides details of the security kernel services KPI calls.

• Appendix B, “Security Context Services (SCS) API Details”

This chapter provides details of the security control services API calls.

• Appendix C, “System Logon Driver API Details”

This chapter provides details of the system logon driver API calls.

• Appendix D, “Client Logon Driver API Details”

This chapter provides details of the client logon driver API calls.

• Appendix E, “Password Validation Driver API Details”

This chapter provides details of the password validation driver API calls.

• Appendix F, “Logon Shell Services API Details”

This chapter provides details of the logon shell services API calls.

• Appendix G, “Security Enabling Services Error Codes”

This chapter provides details of the security enabling services error
codes.

• Appendix H, “Customer Thoughts on Security Products”

 Copyright IBM Corp. 1996 237

This chapter provides information on some of the customer requirements
for security products that have been passed to IBM by our large
accounts.

238 OS/2 API Security Developers Guide

Appendix A. Security Kernel Services KPI Details

The Kernel Programming Interfaces for the Security Enabling Services are
key to it′s strength. IBM customers believe that the general publication of
these interfaces may jeopardize the security of the system. Because of this,
the distribution of this information will be done via a controlled process. If
you need this documentation, please send a request to:

IBM Manager of OS/2 Security
Mail Stop 9171
11400 Burnet Rd.
Austin, Texas 78758

 Copyright IBM Corp. 1996 239

240 OS/2 API Security Developers Guide

Appendix B. Security Context Services (SCS) API Details

This section details the functions contained in the security control services
API.

B.1 SESControlProcessCreation
APIRET SESControlProcessCreation(ULONG ulActionCode)

This function enables the system logon authority to inhibit the creation of all
new processes on the system and conversely releases the system to begin
creating new processes again.

Parameters:

ulActionCode (ULONG) - Input
Indicates whether the function inhibits the creation of new processes
or release the system to permit new process creation.

ulActionCode

 Value Definition
 ----- --
 0 directs the function to release the system to once again

permit process creation

 1 directs the function to perform inhibit process creation

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35517 SES_INVALID_AUTHORITY

Remarks
This call requires system logon authority or remote logon authority.

 Copyright IBM Corp. 1996 241

B.2 SESCreateHandleNotify
APIRET APIENTRY SESCreateHandleNotify(PSUBJECTINFO pSubjectInfo)

This functions allows a process/thread to register for notification of handle
creation.

Parameters:

pSubjectInfo - Output
The address of subject information. The buffer is defined as:

Handle - (HSUBJECT) output
The SES handle that has been created.

Instance - (HSUBJECT) output
Not used.

Name - (INFOENTRY) output
Subject name associated with the handle.

Token - (INFOENTRY) output
Not used.

Source - (ULONG) output
Contains the authority ID of the SCA that created the handle.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35517 SES_INVALID_AUTHORITY
35391 SES_BUFFER_OVERFLOW

Remarks
This call requires access control authority. This call is held captive in
the security enabling services device driver until a handle has been
created.

Upon return, the access control authority can take whatever action is
appropriate, for example add the user′s credentials (for example user ID,

242 OS/2 API Security Developers Guide

group ID(s), etc.) and associated subject handle to a cache of active
users/handles on the system. The call must then be re-issued to
continue receiving notifications. Any handle creations done while the
security control authority is processing the notification are queued up
until the call is re-issued.

B.3 SESCreateInstanceHandle
APIRET APIENTRY SESCreateInstanceHandle(PHSUBJECT pSubjectHandle)

This function creates an instance handle for the specified subject handle.

Parameters:

pSubjectHandle - (PHSUBJECT) input/output
Address of a subject handle. On input, this is the subject handle for
which an instance will be created. On output, the subject handle
contains the value of the new instance handle.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35286 SES_INVALID_HANDLE
35367 SES_INVALID_PARAMETER
35517 SES_INVALID_AUTHORITY

Remarks
This call requires client logon authority

The created instance handle is deleted by security control services
automatically when all processes/threads using the handle have
terminated.

Appendix B. Security Context Services (SCS) API Details 243

B.4 SESCreateSubjectHandle
APIRET APIENTRY SESCreateSubjectHandle(PSUBJECTINFO pSubjectInfo)

This function creates a subject handle for the specified subject information
(name and token).

Parameters:

pSubjectInfo - (PSUBJECTINFO) input/output
Address of subject information. The structure is defined in Table 8.

Table 8. Address of Subject Information

All lengths are maximum 32 bytes (including any null terminating
character).

Handle Output field. Subject Handle created for specified
Name/Token. The Subject Handle is a unique number
(per system boot) assigned by SES.

Instance Set to -1 to indicated that this handle is not an
instance handle.

Length of name Input field. Length of subject name. Cannot be zero.

Pointer to name Input field. Pointer to subject name. Cannot be null.

Length of token Input field. Length of subject token.

Pointer to token Input field. Pointer to subject token.

Source Output field. Source of authority will be set to the
AuthorityID of caller (SLA or RLA).
See SESQuerySubjectInfo() for AuthorityID values.

Field Length

Handle DWORD

Instance DWORD

Length of Name DWORD

Pointer to Name DWORD

Length of Token DWORD

Pointer to Token DWORD

Source DWORD

244 OS/2 API Security Developers Guide

The C Language declaration of the structure is the following:

typedef struct _SUBJECTINFO
{

HSUBJECT Handle; /* Subject Handle */
HSUBJECT Instance; /* Instance Handle */
PVOID Name; /* Subject Name */
ULONG NameLen; /* Subject Name Length */
PVOID Token; /* Subject Token */
ULONG TokenLen; /* Subject Token Length */
ULONG Source; /* Source of Authority */

} SUBJECTINFO, *PSUBJECTINFO;

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35395 SES_PROTECTION_VIOLATION
35517 SES_INVALID_AUTHORITY

Remarks
This call requires SLA or RLA authority.

No check is made of the user information against user information
already stored by security control services. A new handle is returned for
each call. Security control services does not guarantee the uniqueness
of the user information associated with a handle. For example, one
specific name can be associated with more than one handle.

B.5 SESDeleteHandleNotify
APIRET APIENTRY SESDeleteHandleNotify(PHSUBJECT pSubjectHandle)

This functions allows a process/thread to register for notification of handle
deletion.

Parameters:

Appendix B. Security Context Services (SCS) API Details 245

pSubjectHandle - (PHSUBJECT) output
Pointer to the SES handle that has been deleted.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35517 SES_INVALID_AUTHORITY
35311 SES_GENERAL_FAILURE

Remarks
This call requires access control authority. It is held captive in the
security enabling services device driver until a handle has been deleted.

Upon return, the access control authority can take whatever action is
appropriate, for example remove the user′s credentials (for example user
ID, group ID(s), etc.) and associated subject handle from the cache of
active users/handles on the system. The call must then be re-issued to
continue receiving notifications. Any handle deletions made while the
security control authority is processing the notification are queued up
until the call is re-issued.

B.6 SESDeleteSubjectHandle
APIRET APIENTRY SESDeleteSubjectHandle(HSUBJECT SubjectHandle)

This function deletes or removes the specified subject handle from use.

Parameters:

SubjectHandle - (HSUBJECT) input
Value of the subject handle, see SESCreateSubjectHandle().

Returns

Standard OS/2 API return codes.

0 NO_ERROR

246 OS/2 API Security Developers Guide

SES API return codes.

35286 SES_INVALID_HANDLE
35367 SES_INVALID_PARAMETER
35517 SES_INVALID_AUTHORITY

Remarks
This call requires system logon authority or remote logon authority The
caller must have the same authority ID as the process that created the
handle (for example, can only delete the handle it created).

The handle is not actually deleted until all processes/threads using the
handle have terminated.

B.7 SESKillProcess
APIRET SESKillProcess(PID idProcessID)

This function enables the hard kill of a process. A call to this API will kill the
specified process without regard to the current state of the process. For
example, a process may have output files open that will not be closed in an
orderly manner and may become unusable if the process is killed via this
API. If the process is executing in supervisor mode, it will die as it makes
the transition from Ring-0 to Ring-3. If the process is currently executing in
Ring 3, it will die immediately.

Parameter:

idProcessID(PID) - Input
The process ID of the process to be killed.

Returns

Standard OS/2 API return codes.

0 NO_ERROR
303 ERROR_INVALID_PROCID

Remarks
This call requires SLA or RLA authority.

Appendix B. Security Context Services (SCS) API Details 247

B.8 SESlogIntegrityViol
APIRET SESlogIntegrityViol(ULONG Flag,

PCHAR pLogData)

This function writes the LogData string to the error log file (SES.LOG in the
directory specified by the SESDBPATH environment variable) and optionally
starts a shutdown event.

Note: The installable security subsystem should enforce an access control
policy on the SES.LOG file for example untrusted processes should
not be allowed to access it.

Parameters:

Flag (ULONG) - input

LOG_ONLY - only write the LogData to the error log
LOG_HALT - write the LogData to the error log and start a shutdown event

pLogData (PUCHAR) - input
Null terminated string that will be recorded in the error log.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

Remarks
No authority is required for this call.

B.9 SESQueryAuthorityID
APIRET APIENTRY SESQueryAuthorityID(PSZ pszAuthorityTag,

PULONG pAuthorityID)

This function queries the authority ID corresponding to the specified Authority
Tag.

Parameters:

248 OS/2 API Security Developers Guide

pszAuthorityTag - (PSZ) input
Address of the authority tag. Length of the tag must be less than or
equal to eight characters, without including any terminating null
character.

pAuthorityID - (PULONG) output
Address of the authority ID associated with the specified Authority
Tag. See SESQuerySubjectInfo() for possible returned authority ID.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35395 SES_PROTECTION_VIOLATION
35524 SES_ID_NOT_FOUND
35525 SES_INVALID_TAG_LENGTH

Remarks
No authority is required for this call.

B.10 SESQueryContextStatus
APIRET APIENTRY SESQueryContextStatus(PID pid,

PULONG pContextStatus)

This function queries the context status of the specified process.

Parameters:

pid - (PID) input
Process ID:

pid == 0 : Context Status in Effective Security Context of current
PID/TID is returned

pid <> 0 : Context Status in Maximum Security Context of specified
PID is returned

Appendix B. Security Context Services (SCS) API Details 249

pContextStatus - (PULONG) output
Address of context status. The context status consists of the
following data:

Authority ID Authority ID is returned in the 0x??------ format
with the value in ?? from 0 to 255 as follows:

AuthorityID : Security Context Authority
--

0 : none
1 : SES
2 : PSS
3 : reserved
4 : SLA
5-15 : reserved
16-255 : any other SCA

Status Flags Status flags are returned in the 0x--??????
format where ?????? represents the returned
flags. See SESSetContextStatus() for the
values defined for status flags.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35395 SES_PROTECTION_VIOLATION
35518 SES_PROCESS_NONEXISTENT

Remarks
No authority is required for this call.

B.11 SESQueryProcessInfo
APIRET SESQueryProcessInfo(ULONG ulActionCode,

HSUBJECT CUH,
PULONG pulProcessCount,
PVOID pProcessBuf)

250 OS/2 API Security Developers Guide

This function enables the caller to obtain information about currently running
processes.

Parameters:

ulActionCode(ULONG) - INPUT

== 0: (QPI_QUERYSIZE) Query the size of buffer required to retrieve
all information on active processes at time
of call.

== 1: (QPI_QUERYINFO) Return the process info in the buffer
provided (pProcessBuf)

CUH(HSUBJECT) - INPUT

== 0: return process information for all running processes

<> 0: if a non-zero CUH. is specified, the API will return process
information for all running processes that are associated
with the specified client user handle

pulProcessCount (PULONG) - INPUT/OUTPUT
Address of variable to receive/specify the processes count.

output: for Action (QPI_QUERYSIZE) this will return the
number of processes found meeting the criteria
specified by CUH. This value should be used to allocate
the buffer pProcessBuf.

input: for Action (QPI_QUERYINFO) this should specify the
number of processes which the buffer pProcessBuf can hold.
(Should be the same value returned by QPI_QUERYSIZE)

pProcessBuf (PVOID) - INPUT

For Action QPI_QUERYSIZE: This should be NULL

For Action QPI_QUERYINFO: This is the address of the buffer to receive
information. The buffer must be large enough
to receive the information initially requested
in the QPI_QUERYSIZE call.

The buffer will contain the following structure for each process:

typedef struct _PROCESSBUF
{

Appendix B. Security Context Services (SCS) API Details 251

PID ProcessID;
CHAR ProcessName(cchmaxpath);

} PROCESSBUF, *PPROCESSBUF;

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35391 SES_BUFFER_OVERFLOW
35517 SES_INVALID_AUTHORITY
35935 SES_PROTECTION_VIOLATION

Remarks
The purpose of the API is to provide the system logon authority with
information necessary to enforce a policy at logoff, and shutdown time.
For example, at logoff the system logon authority may want to enforce a
policy where all processes running on behalf of the current logged on
user are killed. At shutdown, the policy may include stopping all process
explicitly.

We recommend that the installable security subsystem use this API
during logoff and shutdown to obtain a list of processes the user is
currently executing so that this information can be displayed to the user
to confirm whether the user wants to logoff/shutdown. See the logon
shell services system design section for specific details.

The API SESQuerySubjectInfo() can be used to determine the client user
handle for the current logged on user, or the system logon authority can
save this value from the Logon event.

Usage
The API must be called twice to retrieve the requested information. The
purpose of the first call is to determine the buffer size. An action of
QPI_QUERYSIZE should be specified on the first call. The value returned
in ProcessCount should be used to allocate the proper buffer size for the
second call. The second call should specify an action of
QPI_QUERYINFO, and provide an address for pProcessBuf. The caller

252 OS/2 API Security Developers Guide

must make sure that client user handle is the same value on both calls.
This will not be checked by security enabling services. The information
returned will be for the value of client user handle on the
QPI_QUERYINFO call. If this parameter was not the same as specified on
the QPI_QUERYSIZE call, you risk a buffer overflow.

To make sure that no new processes are started while the event is in
progress, the system logon authority must call the
SESControlProcessCreation() API before querying for process
information. This is important not only to make sure that the information
between the QUERYSIZE and QUERYINFO calls is consistent, but also to
make sure that the user does not start any new processes the system
logon authority is not aware of during a logoff, or shutdown event.

B.12 SESQuerySecurityContext
APIRET APIENTRY SESQuerySecurityContext(PID pid,

PSECURITYCONTEXT pSecurityContext)

This function queries the security context of the specified process.

Parameters:

pid - (PID) input
Process ID:

pid == 0 : Effective Security Context of current PID/TID is returned
pid <> 0 : Maximum Security Context of specified PID is returned

pSecurityContext - (PSECURITYCONTEXT) output
Address of the security context. See SESSetSecurityContext() for
definition of security context. See SESQueryContextStatus() for
definition of context status field of security context. See
SESSetContextStatus() for definition of status flags in context status.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

Appendix B. Security Context Services (SCS) API Details 253

35395 SES_PROTECTION_VIOLATION
35518 SES_PROCESS_NONEXISTENT

Remarks
No authority is required for this call.

B.13 SESQuerySubjectHandle
APIRET APIENTRY SESQuerySubjectHandle(PID pid,

ULONG TargetSubject,
PHSUBJECT pSubjectHandle)

This function queries the subject handle for the target subject of the specified
process.

Parameters:

pid - (PID) input
Process ID:

pid == 0: Specified handle in Effective Security Context of current
PID/TID is returned

pid <> 0: Specified handle in Maximum Security Context of specified
PID is returned

TargetSubject - (ULONG) input

0 EFFECTIVE_PROCESS
1 EFFECTIVE_USER
2 EFFECTIVE_GROUP
4 CLIENT_PROCESS
5 CLIENT_USER
6 CLIENT_GROUP
8 AGENT_PROCESS
9 AGENT_USER
10 AGENT_GROUP

pSubjectHandle - (PHSUBJECT) output
Address of the subject handle. See SESCreateSubjectHandle().

Returns

Standard OS/2 API return codes.

254 OS/2 API Security Developers Guide

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35395 SES_PROTECTION_VIOLATION
35518 SES_PROCESS_NONEXISTENT

Remarks
No authority is required for this call.

A subject handle value of 0 indicates a superuser or system process. It
should imply full access to all objects.

A subject handle value of -1 indicates an unauthenticated user. It should
imply only public/guest access to objects.

B.14 SESQuerySubjectHandleInfo
APIRET APIENTRY SESQuerySubjectHandleInfo(HSUBJECT SubjectHandle,

PSUBJECTINFO pSubjectInfo)

This function queries the subject info for the specified subject handle
(original or instance).

Parameters:

SubjectHandle - (HSUBJECT) input
Value of the subject handle. See SESCreateSubjectHandle().

pSubjectInfo - (PSUBJECTINFO) output
Address of the subject info. See SESQuerySubjectInfo().

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

Appendix B. Security Context Services (SCS) API Details 255

35286 SES_INVALID_HANDLE
35367 SES_INVALID_PARAMETER
35391 SES_BUFFER_OVERFLOW
35395 SES_PROTECTION_VIOLATION

Remarks
No authority is required for this call. However, only a caller with user
identification authority or client logon authority authority will receive the
token in the subject information.

B.15 SESQuerySubjectInfo
APIRET APIENTRY SESQuerySubjectInfo(PID pid,

ULONG TargetSubject,
PSUBJECTINFO pSubjectInfo)

This function queries the subject info for the target subject of the specified
process.

Parameters:

pid - (PID) input
Process ID. The target security context (maximum or effective) is
specified by the PID.

pid == -1: Maximum Security Context of current logged on user is returned
pid == 0: Effective Security Context of current PID/TID is returned
pid <> -1,0: Maximum Security Context of specified PID is returned

TargetSubject - (ULONG) input

0 EFFECTIVE_PROCESS
1 EFFECTIVE_USER
2 EFFECTIVE_GROUP
4 CLIENT_PROCESS
5 CLIENT_USER
6 CLIENT_GROUP
8 AGENT_PROCESS
9 AGENT_USER
10 AGENT_GROUP

For a query of the current logged on user (PID = -1), the
CLIENT_USER information is returned (TargetSubject is ignored).
SES_NO_CURRENT_USER is returned if no user is currently logged
on.

256 OS/2 API Security Developers Guide

pSubjectInfo - (PSUBJECTINFO) output
Address of SubjectInfo structure. See SESCreateSubjectHandle() for
the format of SubjectInfo and for the C declarations of
PSUBJECTINFO and SUBJECTINFO. All lengths are maximum 32
bytes (including any NULL terminating character). The name and
token fields in the SubjectInfo structure need not be null-terminated.
The corresponding length fields must be used to determine the
length.

Handle Output field. Subject handle for specified TargetSubject.

Instance Output field. It returns a -1 to indicate the returned
handle is an original subject handle or returns another
value to indicate the returned handle is an instance
handle.
If the returned value is not -1, the caller may call
SESQuerySubjectHandleInfo to track the chain of
instance handles back to the original subject handle
(but all handles in this chain will have the same
name, token, and source).

Length of name Input/Output field. On input this should be set to the
length of the name buffer (recommend using a maximum buffer
size of 32). On output this returns the actual length
of the name.

Pointer to name Input/Output field. On input this should contain a valid
pointer to a buffer of the size specified by length.
On output the buffer contains the subject name.

Length of token Input/Output field. On input this should be set to the
length of the tTken buffer (recommend using a maximum
buffer size of 32). On output this returns the actual
length of the token (if caller has the authority
to access token information).

Pointer to token Input/Output field. On input this should contain a
valid pointer to a buffer of the size specified by length.
On output the buffer contains the token
(if caller has the authority to access token information).

Source Output field. Source of authority for creation of a
Subject handle or authentication of the user associated
with a subject handle.
The field may contain the authority ID of the SLA/RLA that
created the handle or the UIA that authenticated the user

Appendix B. Security Context Services (SCS) API Details 257

associated with the handle, or the field may contain an
authentication rule number for the the authentication
of the user associated with the handle.

AuthorityID : Security Context Authority
--

0 : none
4 : SLA
16-255 : any other SCA
256-MAX : authentication rule number

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35391 SES_BUFFER_OVERFLOW
35395 SES_PROTECTION_VIOLATION
35518 SES_PROCESS_NONEXISTENT
35526 SES_NO_CURRENT_USER

Remarks
No authority is required for this call. However, only a caller with user
identification authority or client logon authority authority will receive the
token in the subject information.

B.16 SESReleaseSubjectHandle
APIRET APIENTRY SESReleaseSubjectHandle(ULONG TargetSubject,

HSUBJECT SubjectHandle)

This function releases the subject handle specified by the target subject (in
the effective security context of the calling thread of an server process
authority) from the SPA′s reserved set of handles that it is allowed to set.
When a handle is released by the server process authority, the handle can
then be deleted if there are no other processes/threads referencing the
handle.

258 OS/2 API Security Developers Guide

Parameters:

TargetSubject - (ULONG) input

0 EFFECTIVE_PROCESS
1 EFFECTIVE_USER
2 EFFECTIVE_GROUP

SubjectHandle - (HSUBJECT) input
Value of the subject handle to be deleted from the SPA′s list of
allowed handles.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35286 SES_INVALID_HANDLE
35367 SES_INVALID_PARAMETER
35517 SES_INVALID_AUTHORITY

Remarks
This call requires server process authority.

B.17 SESReserveSubjectHandle
APIRET APIENTRY SESReserveSubjectHandle(ULONG TargetSubject)

This function reserves the subject handle specified by the target subject (in
the effective security context of the calling thread of an server process
authority) in the list of handles that the server process authority is allowed to
set. While a handle is reserved for use by an server process authority, it
cannot be deleted even when no other processes/threads are referencing the
handle.

Parameters:

Appendix B. Security Context Services (SCS) API Details 259

TargetSubject - (ULONG) input

0 EFFECTIVE_PROCESS
1 EFFECTIVE_USER
2 EFFECTIVE_GROUP
3 EFFECTIVE_USER_AND_GROUP

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35517 SES_INVALID_AUTHORITY

Remarks
This call requires SPA authority.

B.18 SESResetThreadContext
APIRET APIENTRY SESResetThreadContext(ULONG TargetContext)

This function resets the calling thread′s effective security context according
to the specified TargetContext.

Parameters:

TargetContext - (ULONG) input

PROCESS_CONTEXT
This function resets the thread′s effective security context to be
the same as the effective security context maintained by thread 1
of the process.

THREAD_CONTEXT
This function creates a new (private) effective security context for
the thread by copying the maximum security context.

260 OS/2 API Security Developers Guide

See SESSetSecurityContext() for the format and C declarations of the
security context structure.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35395 SES_PROTECTION_VIOLATION

Remarks
No authority is required for this call.

Once a thread has created a private effective context, it can make
changes without affecting other threads of the process.

B.19 SESSendSecurityContext
APIRET APIENTRY SESSendSecurityContext(PULONG pMessageLength,

PVOID pMessage,
ULONG Timeout,
ULONG AuthorityID)

This function enables a process/thread to send its effective security context
(with a message) to the security control authority specified by the authority
ID. The sending process/thread is blocked until either the message has
been delivered to the security control authority and it has responded, or the
specified timeout value has been exceeded.

Parameters:

MessageLength - (PULONG) input/output
Length of message text without including any terminating null
character. The length is a maximum of 512 bytes. If message length
is 0, no message is specified and pointer to message is NULL.

pMessage - (PVOID) input/output
Address of message text. Message can be binary.

Appendix B. Security Context Services (SCS) API Details 261

Timeout - (ULONG) input
Number of milliseconds that the sending process/thread wants to
wait for the target SCA to accept the message. If the Timeout is
exceeded before the target SCA receives the message, the message
is deleted and the sending process/thread is unblocked.

Authority ID - (ULONG) input
Authority ID of the target SCA.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35521 SES_INVALID_EVENT_DATA
35527 SES_EVENT_FAILURE
35533 SES_EVENT_INVALID
35534 SES_EVENT_TIMED_OUT

Remarks
No authority is required for this call. This API uses logon shell services,
so the system must be in an initialized state or logon shell services will
return SES_INVALID_EVENT. The personal shell services process is
responsible for initializing logon shell services by starting the event
SES_EVENT_INIT. The process targeted to receive the message must be
registered with logon shell services, and waiting on the event
SES_EVENT_SEND_SECURITY_CONTEXT.

B.20 SESSetContextStatus
APIRET APIENTRY SESSetContextStatus(ULONG ContextStatus)

This function sets the context status in the effective security context of the
calling thread.

Parameters:

ContextStatus - (ULONG) input
The status flags in ContextStatus are defined as follows:

262 OS/2 API Security Developers Guide

 /* SES authority flag definitions: */

#define APA_FLAG 0x00000001 /* Agent Process Authority */
#define SPA_FLAG 0x00000002 /* Server Process Authority */
#define RLA_FLAG 0x00000004 /* Remote Logon Authority */
#define SLA_FLAG 0x00000008 /* System Logon Authority */
#define ACA_FLAG 0x00000100 /* Access Control Authority */
#define CLA_FLAG 0x00000200 /* Client Logon Authority */
#define UIA_FLAG 0x00000400 /* User Identification Authority */
#define PSS_FLAG 0x00004000 /* Protected Shell Services Authority */
#define SES_FLAG 0x00008000 /* Security Enabling Services Authority */

 /* SES state flag definitions: */

#define EUF_FLAG 0x00010000 /* Effective User Flag indicates state */
/* of Effective User Handle: */
/* 0: Client User Handle */
/* 1: Agent User Handle */

#define EGF_FLAG 0x00020000 /* Effective Group Flag indicates state */
/* of Effective Group Handle: */
/* 0: Client Group Handle */
/* 1: Agent Group Handle */

#define EPF_FLAG 0x00040000 /* Effective Process Flag indicates state */
/* of Effective Process Handle: */
/* 0: Client Process Handle */
/* 1: Agent Process Handle */

#define PAF_FLAG 0x00080000 /* Propagate Authority Flag */
#define LUF_FLAG 0x00100000 /* Local (PM) User Flag */

Changes to status flags are dependent upon the effective authority of
the caller.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER

Appendix B. Security Context Services (SCS) API Details 263

Remarks
No authority is required for the call itself; however, the values which can
be set are restricted by the authority flags in the maximum security
context of the calling process.

The SESSetContextStatus() API can only be used to modify the effective
security context of a process/thread. All changes made to the effective
security context of the calling thread are granted based on the contents
of the maximum security context of the calling process. If the
status/authority flag being requested is set in the maximum security
context, then the request is granted by security enabling services.

Note: The default security context model is a process model. All
threads share the same security context, so if one thread makes a
change (using the SESSetContextStatus() API) then all others will
see the same change.

If a thread of a process wants to be isolated from changes made
by other threads, or wants to make a change without affecting
other threads, it can create a private copy of its effective security
context with SESResetThreadContext() before making any changes
with SESSetContextStatus().

B.21 SESSetSecurityContext
APIRET APIENTRY SESSetSecurityContext(PSECURITYCONTEXT pSecurityContext)

This function sets the security context in the effective security context of the
calling thread.

Parameters:

pSecurityContext - (PSECURITYCONTEXT) input
Address of the security context structure.

The effective security context for a thread has the following
information:

Field Length

Client User Handle DWORD

Agent User Handle DWORD

Client Group Handle DWORD

Agent Group Handle DWORD

264 OS/2 API Security Developers Guide

Table 9. Effective Security Context Structure

The C Language declaration of the structure is the following:

typedef ULONG HSUBJECT; /* HSUBJECT is a unique 32-bit handle */

typedef HSUBJECT *PHSUBJECT; /* PHSUBJECT is a pointer to HSUBJECT */

typedef struct _SECURITYCONTEXT
{
HSUBJECT CUH; /* Client User Handle */
HSUBJECT AUH; /* Agent User Handle */
HSUBJECT CGH; /* Client Group Handle */
HSUBJECT AGH; /* Agent Group Handle */
HSUBJECT CPH; /* Client Process Handle */
HSUBJECT APH; /* Agent Process Handle */
ULONG ContextStatus; /* Security Context Status */

} SECURITYCONTEXT;

typedef SECURITYCONTEXT *PSECURITYCONTEXT;

Changes to the security context are dependent upon the effective
authority of the caller.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35286 SES_INVALID_HANDLE
35367 SES_INVALID_PARAMETER
35395 SES_PROTECTION_VIOLATION
35517 SES_INVALID_AUTHORITY

Field Length

Client Process Handle DWORD

Agent Process Handle DWORD

Security Context Status DWORD

Appendix B. Security Context Services (SCS) API Details 265

Remarks
Restrictions on this API are as for SESSetSubjectHandle for handle
changes, and SESSetContextStatus for context status changes.

B.22 SESSetSubjectHandle
APIRET APIENTRY SESSetSubjectHandle(ULONG TargetSubject,

HSUBJECT SubjectHandle)

This function sets the subject handle specified by the TargetSubject in the
effective security context of the calling thread.

Parameters:

TargetSubject - (ULONG) input

0 EFFECTIVE_PROCESS
1 EFFECTIVE_USER
2 EFFECTIVE_GROUP
3 EFFECTIVE_USER_AND_GROUP
4 CLIENT_PROCESS
5 CLIENT_USER
6 CLIENT_GROUP
7 CLIENT_USER_AND_GROUP
8 AGENT_PROCESS
9 AGENT_USER
10 AGENT_GROUP
11 AGENT_USER_AND_GROUP
12 BOTH_CLIENT_AGENT_PROCESS
13 BOTH_CLIENT_AGENT_USER
14 BOTH_CLIENT_AGENT_GROUP
15 BOTH_CLIENT_AGENT_USER_AND_GROUP

SubjectHandle - (HSUBJECT) input
Value of the subject handle, see SESCreateSubjectHandle().

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

266 OS/2 API Security Developers Guide

35286 SES_INVALID_HANDLE
35367 SES_INVALID_PARAMETER
35517 SES_INVALID_AUTHORITY

Remarks
The caller must have one of the following authorities, with the restrictions
listed:

SLA A system logon authority can set any valid handle, including
handles 0 and -1.

RLA A remote logon authority can only set handles that it creates
and handle -1.

SPA A server process authority can only set the client
user/group/process handles equal to the handles in its list of
allowed handles or in its maximum security context.

For a caller with multiple authorities, the call succeeds if it would be
possible under any one of the authorities. For example, a caller with
server process authority and remote logon authority may set any handle
it creates or that is in its list of allowed handles.

B.23 SESSetSubjectInfo
APIRET APIENTRY SESSetSubjectInfo(ULONG TargetSubject,

PSUBJECTINFO pSubjectInfo)

This function creates/sets/deletes the SubjectHandle specified by
TargetSubject in the effective security context of the calling thread.

Parameters:

TargetSubject - (ULONG) input

4 CLIENT_PROCESS
5 CLIENT_USER
6 CLIENT_GROUP
7 CLIENT_USER_AND_GROUP
8 AGENT_PROCESS
9 AGENT_USER
10 AGENT_GROUP
11 AGENT_USER_AND_GROUP
12 BOTH_CLIENT_AGENT_PROCESS
13 BOTH_CLIENT_AGENT_USER

Appendix B. Security Context Services (SCS) API Details 267

14 BOTH_CLIENT_AGENT_GROUP
15 BOTH_CLIENT_AGENT_USER_AND_GROUP

pSubjectInfo - (PSUBJECTINFO) input/output
Address of SubjectInfo structure. See SESCreateSubjectHandle() for
the format of SubjectInfo and for the C declarations of
PSUBJECTINFO and SUBJECTINFO. All lengths are maximum 32
bytes (including any NULL terminating character).

Handle Output field. Subject Handle created for specified
Name/Token.

Instance Set to -1 to indicated that this handle is not an
instance handle.

Length of name Input field. Length of subject name.
Cannot be zero.

Pointer to name Input field. Pointer to subject name.
Cannot be null.

Length of token Input field. Length of subject token.

Pointer to token Input field. Pointer to subject token.

Source Output field. Source of authority will be set to
the authority ID of caller (SLA or RLA).
See SESQuerySubjectInfo() for authority ID values.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35395 SES_PROTECTION_VIOLATION
35517 SES_INVALID_AUTHORITY

268 OS/2 API Security Developers Guide

Remarks
This call requires system logon authority or remote logon authority. The
handle is not actually deleted until it is no longer referenced by any
process/thread.

Appendix B. Security Context Services (SCS) API Details 269

270 OS/2 API Security Developers Guide

Appendix C. System Logon Driver API Details

This section details the functions contained in the system logon driver (SLD)
API.

C.1 SLDInit
APIRET APIENTRY SLDInit(VOID)

This function allows the system logon driver to do whatever initialization is
necessary. The default system logon driver provided with security enabling
services uses this opportunity to cache the list of UIAs specified in
SECURE.SYS.

Parameters:
None.

Returns

NO_ERROR

Remarks
This call must be issued before any call to the SLDQueryUIA API.

C.2 SLDQueryUIA
APIRET APIENTRY SLDQueryUIA(ULONG ulEventVector,

ULONG ulEventID,
PSESEVENTDATA pEventData,
PAUTH pAuthorityID,
PULONG pulEventStatus)

This function retrieves the authority ID of the next user identification authority
that should be invoked to identify/authenticate a user for the event specified
by EventVector and EventID (for logon, unlock, etc.). The authority ID of the
user identification authority and event status is returned to the security
enabling services daemon and a return code is set.

Parameters

 Copyright IBM Corp. 1996 271

ulEventVector(ULONG) - input
A 32-bit vector with each bit representing a particular system event.
This field is set by the security enabling services daemon. The
following events are processed by the system logon driver:

SES_EVENT_LOGON
SES_EVENT_UNLOCK
SES_EVENT_CHANGE_PASSWORD
SES_EVENT_CREATE_PROFILE
SES_EVENT_DELETE_PROFILE
SES_EVENT_IA

ulEventID(ULONG) - input
This field is maintained by the security enabling services daemon. It
identifies the process that is requesting the user identification
authority ID.

pEventData(PSESEVENTDATA) - input/output
A pointer to an event data structure. The address of the event data
structure is initially set by the security enabling services daemon.
The fields of the event data structure can be set by the security
enabling services daemon and modified by the system logon driver.
This pointer can address one of the following event data structures:

SESLOGON
SESUNLOCK
SESCHANGEPASSWORD
SESCREATEPROFILE
SESDELETEPROFILE
SESIA

pAuthorityID(PAUTH) - output
This is a pointer to the user identification authority ID of the user
identification authority to be queried by SES (authority ID range 4 to
255).

pulEventStatus(PULONG) - input/output
This is a pointer to the event status field. This field is set by a user
identification authority and passed back to the security enabling
services daemon, which in turn passes it to the system logon driver.
Because this API returns the ID of the user identification authority
that is run next, the authentication status is not available on the first
call to the system logon driver. Table 10 on page 273 and Table 11
on page 273 show the input and output event status that is possible
on a call to the system logon driver.

272 OS/2 API Security Developers Guide

Table 10. SES Status on Input

Status on Input Logon Unlock Chng
Psswrd

Profile I&A

SES_STATUS_USER_AUTHENTICATED N N N N N
SES_STATUS_USER_UNAUTHENTICATED N N N N N
SES_STATUS_NOT_APPLICABLE N N N N N
SES_STATUS_NOT_AVAILABLE N N N N N
SES_STATUS_ID_ONLY Y N N N N
SES_STATUS_GUEST_USER Y Y N N N

Table 11. SES Status on Output

Status on Output Logon Unlock Chng
Pass-
word

Profile I&A

SES_STATUS_USER_AUTHENTICATED Y Y N N Y
SES_STATUS_USER_UNAUTHENTICATED Y Y N N Y
SES_STATUS_NOT_APPLICABLE N N N N N
SES_STATUS_NOT_AVAILABLE N N N N N
SES_STATUS_ID_ONLY Y N N N N
SES_STATUS_GUEST_USER Y Y N N N

On subsequent calls to SLDQueryUIA the rest of the UIAs, if any, are
returned. In this case, on entry to the system logon driver, the event
status of the previous user identification authority is received from
the security enabling services daemon.

Returns

NO_ERROR
ERROR_NO_MORE_ITEMS
ERROR_INVALID_EVENT

Remarks
When the last user identification authority is retrieved a subsequent
SLDQueryUIA() call will result in a return code of
ERROR_NO_MORE_ITEMS.

Appendix C. System Logon Driver API Details 273

274 OS/2 API Security Developers Guide

Appendix D. Client Logon Driver API Details

This section details the functions contained in the client logon driver (CLD)
API.

D.1 CLDInit
APIRET APIENTRY CLDInit(VOID)

This function allows the client logon driver to do whatever initialization is
necessary. The default client logon driver provided with security enabling
services uses this opportunity to cache the list of CLAs specified in
SECURE.SYS.

Parameters:
None.

Returns

NO_ERROR

Remarks
This call must be issued before any call to the CLDQueryCLA API.

D.2 CLDQueryCLA
APIRET APIENTRY CLDQueryCLA(ULONG ulEventVector,

ULONG ulEventID,
PSESEVENTDATA pEventData,
PAUTH pAuthorityID,
PULONG pulEventStatus)

This function retrieves the authority ID of the next client logon authority that
should be invoked for single signon support for the event specified by
EventVector and EventID (for logon, unlock, etc.). The authority ID of the
client logon authority and event status is returned to the security enabling
services daemon and a return code is set.

Parameters:

 Copyright IBM Corp. 1996 275

ulEventVector(ULONG) - Input
A 32-bit vector with each bit representing a particular system event.
The following events are processed by the client logon driver:

SES_EVENT_LOGON
SES_EVENT_UNLOCK
SES_EVENT_LOGOFF
SES_EVENT_LOCK
SES_EVENT_SHUTDOWN
SES_EVENT_CHANGE_PASSWORD
SES_EVENT_CREATE_PROFILE
SES_EVENT_DELETE_PROFILE

ulEventID(ULONG) - Output
This field is maintained by the security enabling services daemon. It
identifies the process that is requesting the client logon authority ID.

pEventData(PSESEVENTDATA) - Input/output
A pointer to an event data structure. This pointer can address one of
the following event data structures:

SESLOGON
SESUNLOCK
SESLOGOFF
SESLOCK
SESSHUTDOWN
SESCHANGEPASSWORD
SESCREATEPROFILE
SESDELETEPROFILE

pAuthorityID(PAUTH) - Output
This is a pointer to the client logon authority ID of the client logon
authority.

pulEventStatus(PULONG) - Input/output
This is a pointer to the event status field. This field can contain one
of the following values:

NULL
SES_STATUS_AUTOGUEST
SES_STATUS_GUEST_USER

Returns

NO_ERROR
ERROR_NO_MORE_ITEMS
ERROR_INVALID_EVENT

276 OS/2 API Security Developers Guide

Remarks
When the last client logon authority is retrieved a subsequent
CLDQueryCLA() call will resultin a return code of
ERROR_NO_MORE_ITEMS.

Appendix D. Client Logon Driver API Details 277

278 OS/2 API Security Developers Guide

Appendix E. Password Validation Driver API Details

This section details the functions contained in the password validation driver
(PVD) API.

E.1 PVDValidatePassword
APIRET APIENTRY PVDValidatePassword(PSESCHANGEPASSWORD pChangePassword)

The security enabling services daemon calls this function whenever a
password must be validated. The password validation driver provided by an
independent software vendor or customer can apply any password policy to
the password and then pass back a return code indicating that the password
is valid or invalid. The default OS/2 password validation driver does no
password validation at all it simply returns to the security enabling services
daemon with a return code of NO_ERROR.

Parameters:

pChangePassword(PSESCHANGEPASSWORD) - Input
This field contains the address of the password information structure.

typedef struct _SESCHANGEPASSWORD
{

ULONG ChangerNameLen;
 CHAR ChangerName[MAX_USER_NAME];
 ULONG ChangerPasswordLen;
 CHAR ChangerPassword[MAX_TOKEN];
 ULONG UserNameLen;
 CHAR UserName[MAX_USER_NAME];
 ULONG UserPasswordLen;
 CHAR UserPassword[MAX_TOKEN];
 ULONG SystemLen;
 CHAR System[MAX_SYSTEM];
} SESCHANGEPASSWORD, *PSESCHANGEPASSWORD;

Returns

NO_ERROR
ERROR_INVALID_PASSWORD

 Copyright IBM Corp. 1996 279

Remarks
None.

280 OS/2 API Security Developers Guide

Appendix F. Logon Shell Services API Details

This section details the functions contained in the logon shell services (LSS)
API.

F.1 SESControlKBDMonitors
APIRET SESControlKBDMonitors(ULONG ulActionCode,

PULONG pulStatus)

This function allows the system logon authority to inhibit the routing of
keyboard input to keyboard monitor programs.

Parameters:

ulActionCode (ULONG) - Input

ulActionCode Definition
 -------------- -----------------------------

0 (CKM_OFF) Turn monitors off
1 (CKM_ON) Turn monitors on
2 (CKM_QUERY) Query current status (on/off)

pulStatus (PULONG) - Output
Address of variable to receive current monitor state.

pulStatus Definition
--------- -------------------------------------
0 (off) monitors are not receiving keystrokes
1 (on) monitors are receiving keystrokes

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35367 SES_INVALID_PARAMETER
35517 SES_INVALID_AUTHORITY
35535 SES_KBD_MOUSE_ERROR

 Copyright IBM Corp. 1996 281

Remarks
This call requires system logon authority.

F.2 SESInactivityNotify
APIRET APIENTRY SESInactivityNotify(ULONG timeout)

Used to notify a process of keyboard and mouse inactivity.

Parameters:

Timeout (ULONG) - Input
Timeout in minutes.

Returns

Standard OS/2 API return codes.

0 NO_ERROR
110 ERROR_OPEN_FAILED

SES API return codes.

35517 SES_INVALID_AUTHORITY
35535 SES_KBD_MOUSE_ERROR

Remarks
This call requires system logon authority. The calling thread will be
blocked in Ring 0. The address provided at initialization will be checked
at 30 second intervals. The smallest timeout period available to the user
will be 1 minute and the largest 99 minutes. If there is no activity
detected within the timeout period, this thread will be unblocked. If there
is any activity detected the timeout value will be reset to the original
value. A timeout of value zero will mean a timeout of infinity and
therefore a lockup will never occur.

282 OS/2 API Security Developers Guide

F.3 SESRegisterDaemon
APIRET APIENTRY SESRegisterDaemon(PULONG pDaemonNumber,

ULONG EventList)

The SESRegisterDaemon API is used to enable an security control authority
to wait on logon shell services events.

Parameters:

pDaemonNumber - (PULONG) output
The DaemonNumber must be passed as an input parameter to any
subsequent WaitEvent or ReturnStatus calls.

EventList - (ULONG) input
The EventList identifies the events the security control authority will
service. The EventList can be any combination of logon shell
services events for which the security control authority has proper
authority.

SES_EVENT_LOGON
SES_EVENT_LOGOFF
SES_EVENT_SHUTDOWN
SES_EVENT_LOCK
SES_EVENT_UNLOCK
SES_EVENT_CHANGE_PASSWORD
SES_EVENT_CREATE_PROFILE
SES_EVENT_DELETE_PROFILE
SES_EVENT_IA
SES_EVENT_SEND_SECURITY_CONTEXT
SES_EVENT_PROCESS_CREATION

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35517 SES_INVALID_AUTHORITY
35533 SES_EVENT_INVALID

Appendix F. Logon Shell Services API Details 283

Remarks
A security control authority must obtain a DaemonNumber via the
SESRegisterDaemon before waiting on any LSS event. The EventList
parameter identifies the events the security control authority will service.
The DaemonNumber is passed as input to the WaitEvent,
ReturnEventStatus, and ReturnWaitEvent calls. There must be a unique
DaemonNumber for each instance of a WaitEvent. If multiple threads will
be concurrently waiting on events, each thread should request a
DaemonNumber via this API.

The system logon authority may specify a security context to be used as
the logoff state security context in this API by first creating/setting the
appropriate security context in its own effective security context before
calling this API. If the subject handles in the SLA′s effective security
context are zero when this API is called, then the logoff state security
context will be the default:

client user handle = -1 (unauthenticated user)
agent user handle = -1
client group handle = -1
agent group handle = -1
client process handle = -1
agent process handle = -1
security context status = 0 (all state/authority flags=0)

If the subject handles in the SLA′s effective security context are non-zero
when this API is called, security enabling services will assign the subject
handles in the SLA′s effective security context to the logoff state
maximum and effective security contexts. The system logon authority
may also specify the agent process authority flag in the logoff state
maximum and effective security contexts and EGF/EPF/EUF in the logoff
state effective security context.

Specified by SLA ==> Logoff State Security Context

CUH=U1 ==> Maximum CUH=U1, Effective CUH=U1
AUH=U2 ==> Maximum AUH=U2, Effective AUH=U2
CGH=G1 ==> Maximum CGH=G1, Effective CGH=G1
AGH=G2 ==> Maximum AGH=G2, Effective AGH=G2
CPH=P1 ==> Maximum CPH=P1, Effective CPH=P1
APH=P2 ==> Maximum APH=P2, Effective APH=P2

APA=X ==> Maximum APA=X, Effective APA=X

APA=0:

EGF=G ==> Maximum EGF=0, Effective EGF=0
EPF=P ==> Maximum EPF=0, Effective EPF=0

284 OS/2 API Security Developers Guide

EUF=U ==> Maximum EUF=0, Effective EUF=0

APA=1:

EGF=G ==> Maximum EGF=1, Effective EGF=G
EPF=P ==> Maximum EPF=1, Effective EPF=P
EUF=U ==> Maximum EUF=1, Effective EUF=U

Upon return from this API, the system logon authority should not delete
the handles that it has assigned to the logoff state security context. Also,
the system logon authority will probably need to reset the handles in its
own security context.

F.4 SESReturnEventStatus
APIRET SESReturnEventStatus(PSESEVENT pEventInfo)

The SESReturnEventStatus API is used to return the status of an event.

Parameters:

pEventInfo - (PSESEVENT) Input/output

typedef struct _SESEVENT
{

ULONG DaemonNumber;
ULONG ReqPID;
ULONG ReqTID;

 SESSecurityContext SCH;
 ULONG EventID;
 ULONG Event;
 ULONG EventStatus;
 SESEVENTDATA EventData;
} SESEVENT, *PSESEVENT;

DaemonNumber - (ULONG) input
The DaemonID specified here must be a valid ID returned from a
previous call to SESRegisterDaemon(). For SESReturnEventStatus()
this should be the same DaemonID specified in the corresponding
SESWaitEvent() call.

ReqPID - (ULONG) N/A
This parameter is not applicable to a return status call.

ReqTID - (ULONG) N/A
This parameter is not applicable to a return status call.

Appendix F. Logon Shell Services API Details 285

SCH - (SESSecurityContext) input
For events where it is appropriate, this structure contains the current
security context of the process/thread that initiated the event.

For the logon event, the client user handle will be the handle
reserved by security enabling services during identification and
authorization. The system logon authority can use this parameter to
return the client group/process handles for the local system logon
user. All other fields are ignored!

For the process creation event, this structure is not used to return the
handles/flags from the system logon authority. Fields are defined in
the event-specific data for process creation to allow the system logon
authority to return handles/flags for process creation.

For send security context and other events that a client logon
authority can receive, a client logon authority may assign instance
handles for the client process in this structure.

EventID - (ULONG) input
EventID is a unique ID assigned by security enabling services to track
the instance of the event. The EventID allows security enabling
services to associate a ReturnEventStatus with a specific instance of
an event type.

Event - N/A

EventStatus - (ULONG) input
The EventStatus parameter is used to pass the results of an event to
logon shell services and/or other SCAs. The following table shows
the possible EventStatus values the can be returned for the listed
events. Events not listed do not require any EventStatus for a
ReturnEventStatus.

286 OS/2 API Security Developers Guide

Event State (SCA) Event Status

SES_EVENT_LOGON_UIA
(UIA)

SES_STATUS_USER_AUTHENTICATED
SES_STATUS_USER_UNAUTHENTICATED
SES_STATUS_CANCEL
SES_STATUS_NOT_APPLICABLE
SES_STATUS_NOT_AVAILABLE
SES_STATUS_ID_ONLY
SES_STATUS_GUEST_USER

SES_EVENT_LOGON_SLA
(SLA)

SES_STATUS_SYSTEM_LOGON
SES_STATUS_NO_ERROR
SES_STATUS_GUEST_USER
SES_STATUS_EVENT_FAILURE

SES_EVENT_LOGOFF_SLA (SLA) SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

SES_EVENT_LOGOFF_QUERY
(SLA)

SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

SES_EVENT_SHUTDOWN_SLA
(SLA)

SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

SES_EVENT_SHUTDOWN_QUERY
(SLA)

SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

SES_EVENT_LOCK_SLA
(SLA)

SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

SES_EVENT_LOCK_QUERY
(SLA)

SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

SES_EVENT_UNLOCK_UIA
(UIA)

SES_STATUS_USER_AUTHENTICATED
SES_STATUS_USER_UNAUTHENTICATED
SES_STATUS_CANCEL
SES_STATUS_NOT_APPLICABLE
SES_STATUS_NOT_AVAILABLE
SES_STATUS_GUEST_USER

SES_EVENT_UNLOCK_SLA
(SLA)

SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

SES_EVENT_IA
(UIA)

SES_STATUS_USER_AUTHENTICATED
SES_STATUS_USER_UNAUTHENTICATED
SES_STATUS_NOT_APPLICABLE
SES_STATUS_NOT_AVAILABLE
SES_STATUS_ID_ONLY

SES_EVENT_PROCESS_CREATION
(SLA)

SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE

Appendix F. Logon Shell Services API Details 287

EventData - (SESEVENTDATA) input/output
Event specific data. This structure is a union of event specific
structures defined for each event.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35528 SES_INVALID_EVENTNUM
35529 SES_INVALID_DMONNUM
35535 SES_SCA_NOT_REGISTERED (only applicable for SES Daemon)

Remarks
The SESReturnEventStatus call is used to return the results of the event
processing to logon shell services and/or subsequent SCAs. For
example, if a user identification authority determined that a user entered
an invalid token, the user identification authority would set the
EventStatus parameter to indicate the user was unauthenticated.

F.5 SESReturnWaitEvent
APIRET APIENTRY SESReturnWaitEvent(PSESEVENT pEventInfo,

ULONG Timeout)

The SESReturnWaitEvent API is used to return the results of an event and
re-wait on the same event instance (for example same EventID) in a single
operation.

Parameters:

pEventInfo - (PSESEVENT) input/output

typedef struct _SESEVENT
{

ULONG DaemonNumber;
ULONG ReqPID;
ULONG ReqTID;

 SESSecurityContext SCH;
 ULONG EventID;
 ULONG Event;

288 OS/2 API Security Developers Guide

ULONG EventStatus;
SESEVENTDATA EventData;

} SESEVENT, *PSESEVENT;

DaemonNumber - (ULONG) input
The DaemonID specified here must be a valid ID returned from a
previous call to SESRegisterDaemon().

ReqPID - (ULONG) output
Process ID of process which initiated this event.

ReqTID - (ULONG) output
Thread ID of process/thread which initiated this event.

SCH - (SESSecurityContext) output
SecurityContext of process/thread which initiated this event.

EventID - (ULONG) input
EventID is a unique ID assigned by SES to track the instance of the
event. The EventID allows SES to associate a ReturnWaitEvent with a
specific instance of an event type.

Event - (ULONG) output
The event parameter identifies the event type corresponding to this
ReturnWaitEvent. Refer to SESWaitEvent Event parameter for a
complete list of LSS events.

EventStatus - (ULONG) input/output
The EventStatus parameter is used to pass the results of an event to
logon shell services and/or other SCAs and to receive status from
logon shell services and/or previous SCAs. Refer to SESWaitEvent
EventStatus for possible output values. Refer to
SESReturnEventStatus EventStatus for possible input values.

EventData - (SESEVENTDATA) input/output
Event specific data. This structure is a union of event specific
structures defined for each event.

Timeout - (ULONG) input
Timeout specifies, in milliseconds, how long to remain blocked
waiting for an event. A value of negative one (-1) indicates an infinite
wait.

Returns

Appendix F. Logon Shell Services API Details 289

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35528 SES_INVALID_EVENTNUM
35529 SES_INVALID_DMONNUM
35534 SES_EVENT_TIMEOUT (only applicable for SES Daemon)
35535 SES_SCA_NOT_REGISTERED (only applicable for SES Daemon)

Remarks
The SESReturnWaitEvent call is used to return the results of the
eventprocessing to logon shell services and/or subsequent SCAs and
re-wait on the same event instance (for example, same EventID) in a
single operation.

This API is used extensively by the SES logon shell services daemon to
wait multiple times for the same event. This API cannot be used to wait
on a new instance of an event or a new event type. For example, a
thread that returns from a wait on a logon event cannot use this call to
return status from the logon event and wait for a logoff event.

F.6 SESStartEvent
APIRET APIENTRY SESStartEvent(PSESSTARTEVENT pSES)

The SESStartEvent API is used to initiate an logon shell services event.

Parameters:

pSES - (PSESSTARTEVENT) input/output

typedef struct _SESSTARTEVENT
{

ULONG Event;
ULONG EventStatus

 SESEVENTDATA EventData;
} SESSTARTEVENT, *PSESSTARTEVENT;

Event - (ULONG) input
The Event parameter defines the event that is being initiated. The
following events are defined for SESStartEvent():

290 OS/2 API Security Developers Guide

SES_EVENT_LOGON
SES_EVENT_LOGOFF
SES_EVENT_SHUTDOWN
SES_EVENT_LOCK
SES_EVENT_UNLOCK
SES_EVENT_CHANGE_PASSWORD
SES_EVENT_CREATE_PROFILE
SES_EVENT_DELETE_PROFILE
SES_EVENT_IA

EventStatus - (ULONG) input
The EventStatus parameter is only used to initiate a logon or unlock
event. The following status values are defined:

SES_STATUS_NO_ERROR
SES_STATUS_ID_ONLY
SES_STATUS_GUEST_USER
SES_STATUS_AUTOGUEST (only applicable for PSS daemon)

EventData - (SESEVENTDATA) input/output
Event specific data. This structure is a union of event specific
structures defined for each event.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35517 SES_INVALID_AUTHORITY
35521 SES_INVALID_EVENT_DATA
35527 SES_EVENT_FAILURE
35533 SES_EVENT_INVALID
35536 SES_CANCEL

Remarks
A process issues an SESStartEvent to initiate an logon shell services
event. This call does not return until all authorized SCAs waiting on this
event have executed and returned their status. It is not necessary to be
defined as an security control authority or to register via the
SESRegisterDaemon API in order to start an logon shell services event.

Appendix F. Logon Shell Services API Details 291

The logon, unlock, and identification and authorization events may pass
in event specific data to initiate the event, for example, if the name and
password of the user are already known to the calling process, it may
pass these in on the SESStartEvent call so that the user identification
authority doesn′ t try to get these from the user again. The change
password and create/delete user profile events must pass in event
specific data to initiate the event. Other events do not have
corresponding event specific data.

Only a process with personal shell services authority may initiate a logon
event with an EventStatus of SES_STATUS_AUTOGUEST.

A return code of SES_CANCEL is returned when a logon or unlock event
is aborted. SES_CANCEL should be interpreted as a request initiated by
the user to cancel the operation, it should not be interpreted as an
unsuccessful logon/unlock attempt.

F.7 SESWaitEvent
APIRET APIENTRY SESWaitEvent(PSESEVENT pEventInfo,

ULONG Timout)

The SESWaitEvent API is used to wait on logon shell services events.

Parameters:

pEventInfo - (PSESEVENT) input/output

typedef struct _SESEVENT
{

ULONG DaemonNumber;
ULONG ReqPID;
ULONG ReqTID;

 SESSecurityContext SCH;
 ULONG EventID;
 ULONG Event;
 ULONG EventStatus;
 SESEVENTDATA EventData;
} SESEVENT, *PSESEVENT;

DaemonNumber - (ULONG) input
The DaemonID specified here must be a valid ID returned from a
previous call to SESRegisterDaemon().

ReqPID - (ULONG) output
Process ID of process which initiated this event.

292 OS/2 API Security Developers Guide

ReqTID - (ULONG) output
Thread ID of process/thread which initiated this event.

SCH - (SESSecurityContext) output
SecurityContext of process/thread which initiated this event.

EventID - (ULONG) output
EventID is a unique ID assigned by SES to track the instance of the
event. The EventID allows an security control authority receiving the
event to differentiate between multiple notifications of the same event
type.

Event - (ULONG) output
The Event parameter indicates which event caused the thread to
unblock. Note that the events started via SESStartEvent may cause
the thread to unblock in various states of the event processing. The
security control authority must be able to distinguish the state of the
event when it is unblocked.

For example, a single thread of an security control authority might be
responding to events as both a user identification authority and client
logon authority since a single event such as logon would unblock this
thread for both user identification authority and client logon authority
processing, the thread needs to be able to distinguish between these
states. The following list defines the possible event states that an
security control authority may encounter:

SES_EVENT_LOGON
SES_EVENT_LOGON_UIA
SES_EVENT_LOGON_SLA
SES_EVENT_LOGON_CLA

SES_EVENT_LOGOFF
SES_EVENT_LOGOFF_QUERY
SES_EVENT_LOGOFF_SLA
SES_EVENT_LOGOFF_CLA

SES_EVENT_SHUTDOWN
SES_EVENT_SHUTDOWN_QUERY
SES_EVENT_SHUTDOWN_SLA
SES_EVENT_SHUTDOWN_CLA

SES_EVENT_LOCK
SES_EVENT_LOCK_QUERY
SES_EVENT_LOCK_SLA
SES_EVENT_LOCK_CLA

Appendix F. Logon Shell Services API Details 293

SES_EVENT_UNLOCK
SES_EVENT_UNLOCK_UIA
SES_EVENT_UNLOCK_SLA
SES_EVENT_UNLOCK_CLA

SES_EVENT_CHANGE_PASSWORD

SES_EVENT_CREATE_PROFILE

SES_EVENT_DELETE_PROFILE

SES_EVENT_IA

SES_EVENT_SEND_SECURITY_CONTEXT

SES_EVENT_PROCESS_CREATION

EventStatus - (ULONG) output
The EventStatus parameter indicates the results of the event. This
parameter is mainly used by the SES daemon. The following table
shows the possible EventStatus values returned by each security
control authority for the various event states. Event states not listed
do not return an EventStatus.

Event State (SES_EVENT_) Event Status Source SCA

LOGON (1) SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAILURE
SES_STATUS_USER_AUTHENTICATED (2)
SES_STATUS_USER_UNAUTHENTICATED
(2)
SES_STATUS_CANCEL
SES_STATUS_NOT_APPLICABLE (2)
SES_STATUS_NOT_AVAILABLE (2)
SES_STATUS_ID_ONLY (2)
SES_STATUS_GUEST_USER (2)
SES_STATUS_AUTOGUEST

SLA
SLA
UIA
UIA
UIA
UIA
UIA
UIA
UIA
PSS

LOGON_SLA SES_STATUS_USER_AUTHENTICATED
SES_STATUS_USER_UNAUTHENTICATED
SES_STATUS_GUEST_USER
SES_STATUS_AUTOGUEST

SES/SLD
SES/SLD
SES/SLD
PSS

LOGON_CLA SES_STATUS_NO_ERROR
SES_STATUS_GUEST_USER
SES_STATUS_AUTOGUEST

SES/CLD
SES/CLD
SES/CLD

LOGOFF (1) SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAIL

SLA
SLA

294 OS/2 API Security Developers Guide

Table 12. Event Status and Sources

Event State (SES_EVENT_) Event Status Source SCA

SHUTDOWN (1) SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAIL
SES_STATUS_INTEGRITY_VIOLATION

SLA
SLA
SES

SHUTDOWN_QUERY SES_STATUS_NO_ERROR
SES_STATUS_INTEGRITY_VIOLATION

SES
SES

SHUTDOWN_SLA SES_STATUS_NO_ERROR
SES_STATUS_INTEGRITY_VIOLATION

SES
SES

SHUTDOWN_CLA SES_STATUS_NO_ERROR
SES_STATUS_INTEGRITY_VIOLATION

SES
SES

LOCK (1) SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAIL

SLA
SLA

UNLOCK (1) SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAIL
SES_STATUS_USER_AUTHENTICATED (2)
SES_STATUS_USER_UNAUTHENTICATED
(2)
SES_STATUS_NOT_APPLICABLE (2)
SES_STATUS_NOT_AVAILABLE (2)
SES_STATUS_GUEST_USER (2)

SLA
SLA
UIA
UIA
UIA
UIA
UIA

UNLOCK_SLA SES_STATUS_USER_AUTHENTICATED
SES_STATUS_USER_UNAUTHENTICATED
SES_STATUS_GUEST_USER

SES/SLD
SES/SLD
SES/SLD

IA (1) SES_STATUS_USER_AUTHENTICATED (2)
SES_STATUS_USER_UNAUTHENTICATED
(2)
SES_STATUS_NOT_APPLICABLE (2)
SES_STATUS_NOT_AVAILABLE (2)
SES_STATUS_ID_ONLY

UIA
UIA
UIA
UIA
UIA

PROCESS_CREATION (1) SES_STATUS_NO_ERROR
SES_STATUS_EVENT_FAIL

SLA
SLA

NOTES:

(1) Only applicable for SES daemon.

(2) Only propagated to the SLD.

EventData - (SESEVENTDATA) input/output
Event specific data. This structure is a union of event specific
structures defined for each event.

Appendix F. Logon Shell Services API Details 295

Timeout - (ULONG) input
Timeout specifies in milliseconds how long to remain blocked waiting
for an event. A value of negative one (-1) indicates an infinite wait.

Returns

Standard OS/2 API return codes.

0 NO_ERROR

SES API return codes.

35529 SES_INVALID_DMONNUM
35534 SES_EVENT_TIMEOUT

Remarks
The events returned for an SESWaitEvent are more extensive than the list
of events that can be initiated via the SESStartEvent. There are two
reasons for this. First all, some events have phases (for example,
SES_EVENT_LOGON_UIA, SES_EVENT_LOGON_SLA, etc.). Security
enabling services determines which phase of logon is currently in
progress.

The event parameter is updated by security enabling services to reflect
the current phase. If an security control authority is a system logon
authority and a user identification authority, and has a single thread
waiting for a logon event, the security control authority is able to
determine which phase of logon is in progress by examining the event
parameter.

The second reason for having more wait events than start events is that
there is no corresponding start event for send security context. This
event is triggered as a result of an security control services call. The
status returned to the security enabling services daemon from UIAs for
logon, unlock, and I&A events is only used as input to the system logon
driver. The status returned to the system logon authority from a logon
and unlock event is passed in by the security enabling services daemon.
However, it is generated by the system logon driver.

An EventStatus of SES_STATUS_INTEGRITY_VIOLATION during a
shutdown event indicates an unrecoverable error. SCAs should not
modify the EventStatus field and should not request any input from the
user. The system logon authority should terminate all user processes
and display a window indicating a security error has occurred. This

296 OS/2 API Security Developers Guide

event is generated by a call to SESlogIntegrityViol with a LOG_HALT
parameter.

Any security control authority with server program authority waiting on
an logon shell services event will be associated with the context of the
thread that started the event (or invoked the SESSendSecurityContext
call) when it is unblocked. Receiving notification of events requires an
security control authority to have the appropriate authority.

For example, an security control authority must have user identification
authority to wait on the SES_EVENT_LOGON_UIA event. The following
table specifies the required authority for each of the defined events. The
security enabling services daemon waits on all events and receives
control after each security control authority returns status.

Appendix F. Logon Shell Services API Details 297

Event State SCA

SES_EVENT_LOGON PSS

SES_EVENT_LOGON_UIA UIA

SES_EVENT_LOGON_SLA SLA

SES_EVENT_LOGON_CLA CLA

SES_EVENT_LOGOFF SLA

SES_EVENT_LOGOFF_SLA SLA

SES_EVENT_LOGOFF_CLA CLA

SES_EVENT_LOGOFF_QUERY SLA

SES_EVENT_SHUTDOWN PSS

SES_EVENT_SHUTDOWN_SLA SLA

SES_EVENT_SHUTDOWN_CLA CLA

SES_EVENT_SHUTDOWN_QUERY SLA

SES_EVENT_LOCK PSS

SES_EVENT_LOCK_SLA SLA

SES_EVENT_LOCK_CLA CLA

SES_EVENT_LOCK_QUERY SLA

SES_EVENT_UNLOCK PSS

SES_EVENT_UNLOCK_UIA UIA

SES_EVENT_UNLOCK_SLA SLA

SES_EVENT_UNLOCK_CLA CLA

SES_EVENT_CHANGE_PASSWORD UIA, CLA

SES_EVENT_CREATE_PROFILE UIA, CLA, SLA

SES_EVENT_DELETE_PROFILE UIA, CLA, SLA

SES_EVENT_IA UIA

SES_EVENT_SEND_SECURITY_CONTEXT Any

SES_EVENT_PROCESS_CREATION SLA

298 OS/2 API Security Developers Guide

Appendix G. Security Enabling Services Error Codes

The following list defines the security enabling services error codes which
may be returned from security enabling services APIs or KPIs:

0 SES_NO_ERROR

35281 SES_INVALID_FUNCTION

35286 SES_INVALID_HANDLE

35288 SES_NOT_ENOUGH_MEMORY

35302 SES_BAD_COMMAND

35311 SES_GENERAL_FAILURE

35367 SES_INVALID_PARAMETER

35391 SES_BUFFER_OVERFLOW

35395 SES_PROTECTION_VIOLATION

35403 SES_INVALID_NAME

35516 SES_INVALID_SUBFUNCTION

35517 SES_INVALID_AUTHORITY

35518 SES_PROCESS_NONEXISTENT

35519 SES_THREAD_NONEXISTENT

35520 SES_SES_DISABLED

35521 SES_INVALID_EVENT_DATA

35522 SES_UIA_NONEXISTENT

35523 SES_NOTIF_DISABLED

35524 SES_ID_NOT_FOUND

35525 SES_INVALID_TAG_LENGTH

35526 SES_NO_CURRENT_USER

35527 SES_EVENT_FAILURE

35528 SES_INVALID_EVENTNUM

35529 SES_INVALID_DMONNUM

35530 SES_INVALID_MESSAGE_LENG

35532 SES_UNBLOCKED

 Copyright IBM Corp. 1996 299

35533 SES_EVENT_INVALID

35534 SES_EVENT_TIMED_OUT

35535 SES_KBD_MOUSE_ERROR

35536 SES_CANCEL

300 OS/2 API Security Developers Guide

Appendix H. Customer Thoughts on Security Products

IBM has spent time discussing OS/2 security with its customers. These
discussions involved the requirements for security in an enterprise
environment and what our customers believed would make a good security
product for the OS/2 environment. This chapter will provide information on
the feedback that was received from these meetings and may prove useful to
ISVs who are developing security products for an enterprise environment.

The information that follows is only a guide based on the feedback that has
been received from IBM customers, it is not intended as a comprehensive
list of security product requirements.

There are two types of users that exist in enterprises, administrators and
users. These people have different requirements when it comes to a security
product.

• Administration

The security administrator has most of the requirements that exist in a
secure environment. These can be divided into the following categories:

 1. Functional requirements

 2. Administration facilities

• Users

 1. Easy to use

 2. No knowledge that it exists

 3. Help for problems

This appendix will concentrate on the security administrator and will look at
the functional and administration requirements that have been mentioned by
IBM customer. Not all of these requirements will be valid for all situations
and indeed in many situations, a low function easy to use product may be
preferable to a high function product, which take longer to administer or be
more difficult to set up and use.

 1. Functional Requirements

• Password control. There are various ways to implement password
control. Under the administration facilities we will look more at the
type of password control requests that have been looked for by
customers.

 Copyright IBM Corp. 1996 301

• Interfaces to other authentication devices, for example, smart cards,
and biometrics devices.

• Host interfaces to products like RACF, ACF2, VFP

• Access control that can be defined by the administrator

− Boot protection. Prevent the user from booting using the diskette
drive. Provide this support by software, or hardware adapter
support.

− Pre-boot authentication when attempting to boot from the hard
disk.

− Ability to enable or disable the ALT-F1 facility.

− File level control. Prevent unauthorized access to specific files
on the system.

− Directory level control. Prevent unauthorized access to certain
directories on the system.

− Drive level control. Prevent unauthorized access to specific
drives or partitions.

− Restrict access to command line in OS/2, DOS, Windows and
from within applications.

− Restrict access to devices such as the following:

- Diskette drive

- Hard files

- COM port

- Parallel port

- Keyboard (for example, ALT-CRTL-DEL)

- Removable media (CD-ROM, tape, etc)

• Encryption. Encryption requirements varied from customer to
customer. A selection of the requirements mentioned are the
following:

− File, directory, disk level encryption

− Per user (for example all a certain user′s files encrypted)

− Key definition, public-key or symmetric cryptography

− Supported encryption algorithms

302 OS/2 API Security Developers Guide

• User database. The user database must be secure there should also
be the option of the following:

− Remote storage

− Local storage

− Both local and remote storage

− Make use of another system′s user database, for example
RACF′s user database

If it is not possible to user another system′s user database, then
database synchronization would be required. There should be a
product default for synchronization time, and a customer defined
option.

• Allow definition of privileges, such as, read, write, create, delete,
execute, copy, move, permissions.

• Provide interfaces to other PC operating systems or other versions of
products, such as, DOS, Windows NT, Win-95, OS/2, OS/2 with SES,
MAC, AIX.

• User shell management (PDF type function) which has the following:

− Definable setup

− In-built default shell setup

− Customer replaceable shell definition

− User personalization

Allow the user personalization of items such as, data folders,
screen colors, icons to be enabled or disabled.

• Provide a secure installation.

• Restrict working hours. This is a requirement to control out of hours
access by users.

− Default.

− Define specific requirements per user.

− Access permissions differ at different times.

• Single signon features. Provide the ability to sign on automatically to
other systems through products like, LAN Server, Netware, CM/2,
DB2/2, TCP/IP.

• Disaster recovery procedures.

• Diagnostic tools.

Appendix H. Customer Thoughts on Security Products 303

• Lockup. Provide a lockup facility that can be activated depending
upon:

− Time of day.

− Inactivity.

− User selected.

• Overheads. The impact of security should be kept to a minimum.
Particular attention should be paid to, memory, disk space,
performance, and hardware overheads.

• Certification compliance. Products should aim to provide functional
compliance with acknowledged security certification standards, D2,
C2, E2/FC2, B1 (through design). It could also be advantageous for
products to gain certain certifications as part of the products medium
or long term strategy.

• Dial-in options with the facility to:

− Enable/disable dial-in

− Receive automatic dial-back

− Have reduced permissions

− Have a definable dial-back number

• Support medialess workstations.

• Backup/Restore. Allow the user database to be backed in a secure,
encrypted manner, to local or remote devices.

• Configurable logon panel. Allow the logon message, panel
background or the whole panel to be replaced.

• Provide a definable screensaver option.

• National language support.

• Audit facilities. More detail on audit facilities will be provided as part
of the administration facilities section.

 2. Administration Facilities

• Installation.

− Ease of installation using facilities such as, CID, NVDM

− Automated SES/Non-SES install

- Install SES version if SES enabled

- Install for non-SES if no SES present

304 OS/2 API Security Developers Guide

- Allow administrator selection of SES/non-SES override

- Non-SES reduced function set

• Access permissions.

− Ability to propagate access permissions

− Provision of default access permissions for new files/directories

• Administration levels. The ability to provide an administration
hierarchy would be useful.

− System administrator

− Area administrator

− User group administrator

Product administration should provide options for administering the
system.

− GUI interface

− Administration script

- Usable from other system (for example, MVS/RACF).

- May be used to manage other systems.

− Action recorder to produce script for GUI interface

• User Management Facilities.

− User and group profiles.

− User ID expiry (date/time).

− No limit on number of user definitions.

− Ability to read existing UPM definitions.

• Enforced password procedures.

− Product default.

− Administrator definable via user exit.

− Administrator definable per character.

− Number of characters.

(For example 5 chars) 1=alpha, 2=numeric, 3=alpha/numeric,
4=alpha/numeric, 5=spec characters (&)

− Product allows for a minimum of 0, maximum of 16 as password
length.

Appendix H. Customer Thoughts on Security Products 305

− Local or remote enforcement.

- Definable

- If no remote access check local (definable)

− Password Expiry.

- Date.

- Time period.

- Definable.

- Force.

- Password reuse criteria.

- Password synchronization. Synchronization should be
performed with other systems and programs:

• Local - Screensaver, keyboard lock, user logon

• Remote - Host sessions, LAN

• Software license control.

− Copy count

− Installation restrictions

− Interfaces to license management products

• Auditing. There are many facilities that could be useful with regard
to auditing.

− Pre-defined audit trails.

− Customer defined audit trails.

− Definable audit reporting. Audit reports should be able to be
stored locally, remotely or both.

− Audit log transmission. This should be definable in terms of the
date, time etc. A product default should also be included.

− Audit log size.

- Default (disk space)

- Max size definition

- Wrap around option

- Definable action at maximum size with a default of flag to
administrator

- Audit log analysis tools

306 OS/2 API Security Developers Guide

- Report generators

As stated earlier this list is not complete, as is doesn′ t include some of the
more obvious considerations such as, performance and data import and
export. It should provide a general idea on the type of functions that
customers are investigating.

Appendix H. Customer Thoughts on Security Products 307

308 OS/2 API Security Developers Guide

Glossary

A
access . An interaction to obtain information
from any source or to communicate.

access control . A security mechanism to
protect access to programs or information, for
example RACF.

access method . The technique or program used
for moving information or communicating.

access time . The time from issuing a command
to read or write to a file on disk until the
physical read or write is actually carried out.

access object . Object of the rights
administration on which subjects access.
Access objects are generally files and
interfaces.

administration object . Rights administration
object which contains rules for several users.
The administration object can be assigned to
domain, user groups, users, workstations and
trusted programs.

adapter card . A printed circuit card for
attaching input/output devices to a computer.

address . In data communication, the unique
code assigned to each device or workstation
connected to a network.

AIX . Advanced Interactive eXecutive: IBM ′s
version of UNIX.

algorithm . A set of rules to solve a problem in
a number of steps.

API . Application Program Interface. Interface
through which programs can communicate.

ASCII . American National Standard Code for
information interchange: a coded character set
used on personal computers.

authenticate . A process to verify the integrity
of data or a message, or to verify the user of an
information system or protected source.

authentication . Confirmation of a given identity,
using password, smart card or ID token.

authentication server . Part of a trusted security
base. Responsible for authenticating identities
of clients. Maintains passwords and group
membership information for users.

authorize . Granting someone the right to use a
computer, application or database; is also used
in connection with programs to grant complete
or restricted access to an object, resource or
function.

audit . Logging of user actions for audit
purposes.

auditor . Role with regard to rights
administration or log evaluation. DP auditor,
responsible for auditing DP systems.

B
batch file . On a personal computer, a file
having the extension .BAT, which contains a list
of commands that are executed when the file is
called.

bit map . (1) An area of memory or storage that
contains the pixels representing an image,
arranged in the sequence in which they are
normally scanned, to display the image.
(2) A representation of an image by an array of
bits.

BIOS . The area of the computer that controls
incoming and outgoing signals.

 Copyright IBM Corp. 1996 309

boot . The process of starting up a personal
computer.

boot drive . Logical drive from which the
operating system is loaded. Generally it is the
disk drive (C). It can, however, also be a floppy
drive (A).

boot protection . Prevention of a system start
from a medium other than the hard disk (or boot
ROM). A system start with an operating system
diskette is prevented.

bus . In a processor, a physical facility to
transfer data; for example, ISA, MCA. Adapter
cards are connected to a bus.

byte . A string that consist of a number of bits,
treated as a unit, and representing a character.

C
CBC mode . Cypher Block Changing. DES
encryption mode in which not only the key, but
also the last encrypted 8 byte are used for
encryption.

CCA . IBM Common Cryptographic Architecture;
the IBM architecture for the cryptographic
Application Programming Interface (API).

client/server system . A client/server system is
a local network where PCs are connected to a
server.

CD-ROM. Compact Disc Read Only Memory. A
Compact disc specifically for storing data.

CD-ROM XA . Compact disk read-only-memory
extended architecture. A partial implementation
of CDI and DVI standards.

channel . A connection between a personal
computer and one or more input/output devices.

checksum . The sum of a group of data, used
for checking purposes.

cipher . A cryptographic system.

clip board . A temporary storage area used to
pass information within a program or from a
program to another.

CKDS . Cryptographic Key Data Set: a file
containing cryptographic keys.

CMOS . A chip technology that requires little
power, used to store vital configuration data of
a PC.

COM . Serial interface for data communication.
Is used to connect a modem, for example.

confidentiality of data . Protection against
unauthorized reading. Can only be achieved by
encryption.

configuration . (1) An arrangement of physical
or logical devices that make up a (sub)system.
(2) The manner in which the hardware and
software of an information processing system
are organized and interconnected.

control vector . In TSS: a 16-byte string that
modifies the master key or a key-encrypting key
to create another key that is used to encipher
and decipher data or data keys.

controller . A device that controls the operation
of input/output devices.

conventional memory . Random Access memory
in a PC that DOS or OS uses as the first 640 K
byte.

CRC. Cyclic Redundancy Check. Checksum
which is not cryptographic.

cryptography . The principles and methods for
encrypting plain text and decrypting cipher text
to conceal its meaning.

CVC. Cryptographic checking of the contents of
a magnetic stripe of a credit card (Mastercard).

CVV. Cryptographic checking of the contents of
a magnetic stripe of a credit card (VISA).

310 OS/2 API Security Developers Guide

D
data encrypting key . A key used to encipher,
decipher or authenticate data.

data integrity . Data intactness. The intactness
is checked by an integrity check (checksum
method).

DEA . Data Encryption Algorithm. Method for
encrypting data using a 64 block cipher that
uses a 64 bit key, including 8 parity bits.

decipher . To convert encrypted text (cipher
text) into the original text (plain text).

DES. Data Encryption Algorithm. Developed
and published in 1977 by IBM. A US standard
for encrypting data, available in two versions,
full DES and commercial DES. Standard
algorithm used by international banks.
Symmetrical algorithm with a 56 bit long key.
The CBC mode is regarded as secure.

device . A physical unit of a computer system,
often used for input/output operations, which
can be used in a logical order or have a logical
address.

directory . A hierarchically structured logical
area for storing files on a hard disk or diskette,
which may include one or more sub-directories.

DOS. Disk Operating System: an operating
system for personal computers.

domain . Organizational unit which is commonly
managed. Also known as system.

E
EBCDIC . Extended Binary Coded Decimal
Interchange Code: a coded character set used
on main-frames.

emulator . Imitator.

encipher . To convert an original text (plain
text) into encrypted form (cipher text).

encrypt . Synonym of encipher.

ESS. Establish Secure Session; a cryptographic
means by which hardware components
establish.

extended attribute . The OS/2 method of
attaching additional information to a file object.
Extended attributes can be used to store notes
on file objects (for example, version, history),
categorize file objects for example, file type,
associations, describe the format of data
contained in the file object, or append additional
data to the file object. They are stored
separately from the file object they are
associated with and are managed by the file
system attached to the file object.

extended data . User-defined information,
including multimedia information, about Light
Table folder objects. Such information goes
beyond what is available in OS/2 standard data.
Extended data includes user-defined columns,
and may come either from a supported
database or from extended attributes.

extension . In the name of a file, the three
letters following the dot, which often indicates
the type of file, for example, BAT in
AUTOEXEC.BAT indicates batch file.

F
folder . A directory as represented on the OS/2
desktop.

font . The characters available for text with a
given set of attributes.

G
generation . The number of copies away from
the original.

graphical user interface (GUI) . A type of
computer interface consisting of a visual
metaphor of a real world scene, often of a

Glossary 311

desktop. Within that scene are icons
representing objects, that the user can access
and manipulate with a

graphic . Any pictorial representation of
information.

graphics . Text or pictorial artwork created by a
variety of means, such as electronic generated
graphics software and the pressed onto the
video-discs.

H
hertz . A measure of frequency equivalent to
cycles per second.

host . A host is a ″large″ computer which acts
as a ″host″ for terminals or workstation PCs with
terminal function.

HPFS. High Performance File System. HPFS
provides long file name support and fast access
to very large disk volumes.

I
I&A . Identification and Authentication; see
identification and authentication.

icon . A pictorial representation of a function
that you can select to carry out this function.

identification . Identification of a DP user to the
system with a user ID (Name or Personal-No).

ID token . Checkcard-sized special calculator
with a keypad to generate a dynamic password
according to the Challenge/ Response method.

interface . Hardware and/or software that links
systems, programs, or devices.

I/O. Input/Output: pertaining to a device that
performs input and/or output operations.

IPL . Initial Program Load; the initialization of a
computer.

ITSEC. Information Technology Security
Criteria. Criteria book issued by the EU, worked
out by four member states - France, The
Netherlands, UK and Germany. Evaluations to
determine security are made on the basis of
ITSEC. The products are awarded a certificate if
they meet the requirements. F-C2, E2 means
that the security functions of class F-C2 and the
evaluation level E2 were reached. F-C2, E2 is
the commercial standard.

image . A still picture or one frame.

interlace . The technique of using more than
one vertical scan to reproduce a complete
image. In television, a 2:1 interlace is used,
giving two vertical scans per frame. One scan
will be odd lines, the other will be even lines.

K
KB . kilobyte: 1024 bytes.

Kilohertz (kHz) . Thousands of cycles per
second.

KEK . Key Encrypting Key; a key used to
encrypt, decrypt or authenticate keys for
transmissions.

key . In computer security, a sequence of
symbols used with a cryptographic algorithm for
encrypting or decrypting data.

key administration . Administration program
which administers the keys and restores them if
they are destroyed.

key token . In TSS, a data structure that can
contain a cryptographic key, a control vector,
and other information related to the key.

KM . Master Key: the top level key in a
hierarchy of key encrypting keys.

KMC . Key Management Center; a department
for managing cryptographic keys.

312 OS/2 API Security Developers Guide

L
local area network (LAN) . A data network
located on the user′s premises in which serial
transmission is used for direct data
communication between workstations.

leading logon type . The type of logon that must
be done before other logons can be used.

link . (1) A logical connection, (2) A physical
connection, (3) An interconnection between data
or programs.

LPT . Parallel interface to attach a printer,
streamer, etc.

M
MAC . Message Authentication Code.
Cryptographic checksum, based on the
DES-MAC. The encryption result, the last 8
encrypted bytes, is the checksum.

migrate . (1) To move data from one storage
media to another, (2) To change to a new
operating environment.

module . Program module which takes over a
specific function. Example: logging in a linear
file on the server, or logging in a local ring
buffer file. Modules can be swapped by the
system administrator.

multi-tasking . A technique that allows several
processes to appear to run simultaneously,
even though the computer only has one CPU.
This is achieved by sequentially switching the
CPU between tasks.

multiplexer . A device that interleaves the
transmission of several input signals over a
connection such that the input signals can be
recovered.

N
network . (1) A network of devices and software
connected for information interchange, (2) An
arrangement of modes and connecting branches
to interconnect computers, terminals and
workstations.

node . In a network, a point at which one or
more units are connected. Each node has a
network address.

O
object . (1) Resource of the DP system, such as
files, interfaces, networks, etc. (2) A visual
component of a user interface that a user can
work with to perform a task.

OEM. Equipment sold by another manufacturer.

off line encryption . File encryption in a
separate work process.

on line encryption . Transparent encryption
during the Read or Write process. On-line
encryption in Safe Guard Professional can be
both file and sector oriented.

orange book . Security standards from the US
Department of Defense that specify different
security levels.

P
panel . The set of information displayed on the
screen of a display station.

password . In computer security, a string of
characters used to gain access to a computer
file or system, during sign-on or at a later time.
A PIN can be considered as a password.

path . (1) In a network, any route between two
nodes, (2) The route traversed by information
exchanged between two network devices, (3) A

Glossary 313

command in DOS related to the path through its
(sub)directory structure to reach a file.

pause function . ″Logoff″ for a short work
interruption. The screen is blanked, the
keyboard can only be used for special entries
and the work station is locked. To continue
work, the user who triggered the pause, must
log on again.

PCF. Programmed Cryptographic Facility: IBM
program for enciphering and deciphering text
and for key management.

pel . Picture element. The smallest building
block that a screen or bit-mapped image can
display. Pel and pixel can be used
interchangeably.

pixel . A single point of an image, having a
single pixel value.

pop-up . A window which appears on the screen
to display text, graphics, messages, or
documents.

PIN. Personal Identification Number: The secret
number that a user must remember to gain
access to a service, can be used in conjunction
with an IBM Personal Security Card.

plain text . Non-encrypted data.

private key . In computer security, a secret key
used to encrypt data.

protocol . Rules and agreements for
communication between devices.

PSC. Personal Security Card: A standard smart
card with a processor for executing DES-based
cryptographic functions. It can hold more than
4000 bytes of data, including the characteristics
of a signature for the purpose of verification.
Incorporated. Currently supported by IBM.

public key . In computer security, a widely
known key used to encrypt data, the encrypted

data must be decrypted with a related private
key.

R
RAM . Random Access Memory: Memory where
data can be written and read directly.

reuse . This is the recreation of the original
status of a file, the main memory or the swap
file after it has been deleted or after the user
has logged off.

resolution . The ability of an image reproducing
system to reproduce fine detail.

RGB . A method of processing color images
according to their red, green, and blue color
content. Colors can also be measured on an
HIS color scale. Contrast with composite, Y/C,
and YUV.

role . Role which the user plays, particularly
with regard to rights administration. A role is
assigned specific administrative rights, for
example system administrator, auditor,
accessory or simple user.

ROM . Read Only Memory: Memory to store
programs or data permanently.

S
SAF . System Authorization Facility: a program
that provides access to RACF.

SAPI . Interface for application call via TSS
hardware using special verbs for executing
security information.

scanner . A device which performs scanning.

schema . The data-definition part of a database
table.

sealing . Sealing of data for purposes of the
integrity check.

314 OS/2 API Security Developers Guide

security . The protection of data, system
operations and devices from accidental or
intentional ruin, damage or exposure.

security architecture . IBM strategy and
architecture for secure information systems.

security enabling services . Add-on in OS/2,
which acts as interface between ISV products
and OS/2.

security server . Server, which saves data
important for the security of the security
sub-system and carries out authentications.

Security officer . Role in rights administration.
Executive responsible for DP security.
Generally he is responsible for the initial
installation or de-installation, as well as for key
management.

server . On a LAN, a station that provides
services to other stations; for example, file
server, print server, and security server.

session . The period of time that a network
connection lasts, including the establishment
and release of the connection.

session key . Key valid for only one session. A
session is the time between logon and logoff.

signature verification . In TSS an optional
feature of the security interface unit for user
verification through their signature, written with
a signature verification pen and recognized by a
signature verification module on the
cryptographic adapter.

Single SignOn (SSO) . First logon to a network.
The Safe Guard Professional SSO function
enables the automatic logon to other computers
in the network, after the user has authenticated
himself once. Passwords are automatically
synchronized.

software configuration utility . One of the
util it ies distributed with the workstation security

services program for configuring security
servers and device drivers.

sub-directory . A directory contained within
another directory in the file system hierarchy.

subject . A subject is a user or process which
accesses objects (files, etc.).

subsystem . A secondary or subordinate
system, usually capable of operating
independently.

system administrator . User in a DP system who
plays an important administrative role. He is
responsible for the administration of rights.

T
token . Bit string (combination of bits) to enable
the execution of a specific operation.

token-ring . An IBM network with a ring
topology that passes tokens from one attaching
device to another.

trusted programs . Programs, which either do
not have the user ′s full access rights or whose
rights go over and beyond these.

trusted workplace shell . Workplace which
corresponds to the individual rights profile of
the user. It cannot be changed by the user.

TSS. Transaction Security System: A series of
cryptographic products for providing a secure
workstation.

U
user . User in a DP system. In Safe Guard
Professional a user generally does not have
administration rights.

user ID . User identification, name for a user in
the system.

Glossary 315

W
wildcards . Placeholders for any number of
other characters. An asterix (*) stands for a
permitted set of any other characters. A
question mark (?) stands for any other single
character.

workstation . A terminal or microcomputer that
often is connected to a main frame or a

network, at which the user can perform
applications.

X
XGA . Extended graphics array. A high
resolution display with a display matrix (pels) of
1,024 x 768 at 256 colors. XGA can also provide
more colors with reduced resolution (640 x 480
at 65,536 colors).

316 OS/2 API Security Developers Guide

List of Abbreviations

ACA access control authority

ACL access control list

AGH agent group handle

APA agent process authority

APH agent process handle

AUH agent user handle

AIX advanced interactive executive

ANSI American national standards
institute

API application programming interface

APAR authorized program analysis report

ASCII American national standard code for
information interchange

AT advanced technology

AUH agent user handle

BIOS basic input output system

BGA business graphics adapter (8514/A
card)

BMP bit-mapped graphics

CGH client group handle

CKDS cryptographic key data set

CLA client logon authority

CLD client logon driver

CMOS complimentary metal oxide
semiconductor

CPH client process handle

CPU central processor unit

CTCPEC Canadian trusted computer product
evaluation criteria

CUH client user handle

CV control vector

CVC card verification code

CVV card verif ication value

DAC discretionary access control

DBMS database management system

DCE distributed computing environment

DEA data encrypting algorithm

DES data encrypting standard

DIB device independent bitmap

DLL dynamic l ink l ibrary

DMA direct memory access

DOS disk operating system

DoD department of defense (USA)

EBCDIC extended binary coded decimal
interchange code

EC engineering chance

EGF effective group flag

EISA extended industry standard
architecture

EPF effective process flag

ESS establish secure session

EUF effective user flag

FAT fi le allocation table

FSD f i le system driver

GUI graphical user interface

HPFS high performance fi le system

IBM International Business Machines

ICIS installation, configuration,
init ialization support

ICRF integrated cryptographic facil i ty

IFS installable fi le system

IMS information management system

IPL init ial program load

IRQ interrupt request

ISA industry standard architecture

 Copyright IBM Corp. 1996 317

I&A identification and authentication

ISO international organization for
standardization

ISS installable security subsystem

ISV independent software vendors

ITSEC information technology
securityeEvaluation criteria
(European)

KB kilobyte

Kbps kilobits per second

KEK key encrypting key

KM master key

KMC master key center

KPI kernel programming onterface

LAN local area network

LSB least significant bit

LSS logon shell services

LUF local user flag

MAC Message authentication code

MB megabyte (1,048,576 bytes)

Mbps megabits per second

MBps megabytes per second

MC micro channel

MCA micro channel architecture

MVDM multiple virtual DOS machine

MVS multiple virtual system

NLS national language support

OEM other equipment manufacturer

OS/2 Operating System/2

PAF propagate authority flag

PC personal computer

PCF programmed cryptographic facil i ty

PC AT personal computer advanced
technology

PC XT personal computer extended
technology

PDF personal desktop facility

PDD physical device driver

PIN personal identif ication number

PM Presentation Manager (OS/2)

POSIX portable operating system
interfaces for computer
environments

PSC personal security card

PSS personal shell services

PS/1 personal System/1

PS/2 personal System/2

PVD password validation driver

RACF resource access control facility

REXX restructured extended executor
language

RISC reduced instruction set computer

RLA remote logon authority

RPQ request for price quotation

RSCS remote spooling communications
subsystem

R/W read/wri te

SAF system authorization facil ity

SAPI secured application programming
interface

SCA security context authority

SCS security context services

SDK software developers kit

SES security enabling services

SIU security interface unit

SKS security kernel services

SLA system logon authority

SLD system logon driver

SLE session level Eecryption

SNA system network architecture

318 OS/2 API Security Developers Guide

SPA server process authority

SPI service provider interface

SRPI server requester programming
interface

SVGA super video graphics adapter

SWF security workstation feature

TCB trusted computing base

TCSEC trusted Ccmputer system evaluation
criteria (Orange book)

TMK terminal master key

TSO t ime sharing option

TSR terminate and stay resident

TSS transaction security system

UIA user identif ication authority

UPA unprivileged process authority

UPM user profi le management

WAN wide area network

VDD virtual device driver

VDM virtual DOS machine

VM virtual machine

WOAM work place shell object access

WPS workplace shell

XGA extended graphics array

List of Abbreviations 319

320 OS/2 API Security Developers Guide

Index

A
A Process Sends Its Security Context to an SCA

Process 184
A User Logs on Remotely to an Application

Server 180
Abbreviat ions 317
ACA 39, 40, 42, 71, 85, 161
ACA Daemon 149
ACA flag 117
ACA, SLA and UIA 71
access 309
Access Control 8, 87, 309
access method 309
access object 309
access rights 32
access time 309
Accountabil i ty 11, 15
Acronyms 317
Activity Detection 193
adapter card 309
address 309
administration object 309
Agent Group Handle 103
agent process 35
Agent Process Handle 103
agent user 35
Agent User Handle 102
AIX 309
algori thm 309
An SPA Process Acts as proxy 186
An Untrusted Process 183
APA 41, 43, 72, 85, 162
APA and SPA 72
APA flag 118
APA Process 149
API 24, 77, 86, 87, 88, 89, 309

SCS 178
API Calls

CLD API 275
CLDInit 275

API Calls (continued)
CLDQueryCLA 275
Error Codes 299
LSS API 281
PVD API 279
PVDValidatePassword 279
Return Codes 299
SCS API 241
SESControlKBDMonitors 281
SESControlProcessCreation 241
SESCreateHandleNotify 242
SESCreateInstanceHandle 243
SESCreateSubjectHandle 244
SESDeleteHandleNotify 245
SESDeleteSubjectHandle 246
SESInactivityNotify 282
SESKillProcess 247
SESlogIntegrityViol 248
SESQueryAuthorityID 248
SESQueryContextStatus 249
SESQueryProcessInfo 250
SESQuerySecurityContext 253
SESQuerySubjectHandle 254
SESQuerySubjectHandleInfo 255
SESQuerySubjectInfo 256
SESRegisterDaemon 283
SESReleaseSubjectHandle 258
SESReserveSubjectHandle 259
SESResetThreadContext 260
SESReturnEventStatus 285
SESReturnWaitEvent 288
SESSendSecurityContext 261
SESSetContextStatus 262
SESSetSecurityContext 264
SESSetSubjectHandle 266
SESSetSubjectInfo 267
SESStartEvent 290
SESWaitEvent 292
SLD API 271
SLDInit 271
SLDQueryUIA 271

 Copyright IBM Corp. 1996 321

API for Audit 88
API for DAC 87
API for Logon 86
API for Single Signon 89
API for Trusted Program Support 89
Application Development 91
Application Management 105
Architecture 95
ASCII 309
Association 100, 102
Association of Security Context with OS/2

IPC 177
Assurance 11, 17
Audit 8, 16, 21, 88, 309
Audit Support 156
auditor 309
authenticate 309
Authentication 16, 309
authentication server 309
authority f lag 39
Authority Flags 117, 176

ACA flag 117
APA flag 118
CLA flag 118
RLA flag 119
SLA flag 119
SPA flag 120
UIA flag 121

Authority ID 113
authorize 309
Auto guest logon state 52
Auto-Guest Logon State 136
AUTOGUEST 51, 56, 58, 62

B
Background (detached) process 41
Background (detached) program 41
batch file 309
Biometrics 8
BIOS 309
bit map 309
boot 309
boot drive 310

boot protection 310
Building an ISS 85
bus 310
byte 310

C
C2 21, 27, 31
Callgate Level Support 153
Callouts 98, 99, 152, 153, 154, 155, 156, 198

Order of Events 154
Callouts for Callgate Level Support 99, 153
Callouts for Logon Shell Services Trusted Path

Support 99, 155
Callouts for Multiple Virtual DOS Machine

Support 99, 154
Callouts for Security Enabling Services API

Audit Support 99, 156
Callouts for Security Relevant OS/2 System

Calls 98, 152
Callouts to the ISS security kernel for LSS

functions 198
CBC mode 310
CCA 310
CD-ROM 310
CD-ROM XA 310
Certif ication 9, 10
change password 44, 192
channel 310
checksum 310
cipher 310
CKDS 310
CLA 40, 49, 74, 85, 163
CLA Daemon 149
CLA Daemons 133
CLA flag 118
CLD 47, 69, 75, 85, 89
CLD API 196, 275

CLDInit 275
CLDQueryCLA 275

CLD Dynamic Link Library 134
CLDInit 275
CLDQueryCLA 275
Client Group Handle 103

322 OS/2 API Security Developers Guide

Client logon authority 49
Client logon driver 47
Client Logon Driver API 196
client process 35
Client Process Handle 103
Client Processes 186
client user 35
Client User Handle 102
client/server system 310
clip board 310
CMOS 310
COM 310
confidentiality of data 310
CONFIG.SYS 51, 62, 143, 226
configuration 63, 142, 226, 310

CONFIG.SYS 143, 226
SECURE.SYS 144, 227

context 32
Context Status Management 128, 130
contexts 36
Continuous Protection 10, 12
control vector 310
control ler 310
conventional memory 310
CRC 310
create user profile 44
Creating an Untrusted Child Process 183
credentials 32, 36
cryptography 310
Customer Requirements 7, 301
CVC 310
CVV 310

D
DAC 31, 66, 71
data encrypting key 311
data integrity 311
DCE 35, 44
DEA 311
decipher 311
DEFAULT OPERATION 54, 56, 60
Definition of a guest user 136
Definition of Auto-guest 138

Definition of Local System Logon 135
Definition of Security Context 110
delete user profile 44
DES 311
Design Guidelines 91
device 311
Device Helpers 156
directory 311
Discretionary Access Control 8, 13
DLL 69, 86, 87, 88, 89
DLL for Audit 88
DLL for DAC 87
DLL for Logon 86
DLL for Single Signon 89
DLL for Trusted Program Support 89
domain 311
DOS 311
dynamic link libraries 69

E
EBCDIC 311
Effective Group Flag 114
Effective Process Flag 114
Effective Security Context 110
Effective User Flag 115
EGF 175
emulator 311
encipher 311
encrypt 311
EPF 175
Error Codes 299
ESS 311
EUF 175
Event Flows 190

Change Password 192
Lock 191
Logoff 191
Logon 190
Shutdown 191
Unlock 190

Event Order 154
Explicit logon as a guest user 137
Explicit logon state 52, 136

Index 323

Export 156
extended attr ibute 311
extended data 311
extension 311

F
File System API 150
File System Open Callout 159
File System Router 150
File System Services 156
fixpak 62
Flags 108, 114, 117

ACA flag 117
APA flag 118
Authori ty 176
CLA flag 118
Effective Group Flag 114
Effective Process Flag 114
Effective User Flag 115
EGF 175
EPF 175
EUF 175
Local User Flag 115
LUF 175
PAF 176
Propagate Authority Flag 116
RLA flag 119
SLA flag 119
SPA flag 120
Status 174
UIA flag 121

folder 311
font 311

G
generation 311
graphic 312
graphical user interface 311
graphics 312
group credentials 32
Guest Logon Support 51
Guest user 136

H
handle 23
Helpers 99, 100, 156
hertz 312
Hooks 31
host 312
HPFS 312

I
I/O 312
I/O Device API 150
I0 43, 44, 66, 312
ICIS 29, 62, 142, 225

CONFIG.SYS 143, 226
Configuration 142, 226
Initialization 144, 230
Installation 142, 225
SECURE.SYS 144, 227

icon 312
ID token 312
Identif ication 11, 16, 312
Identification and Authentication 7, 43, 44, 66
image 312
Implementation 95
Inactivity Detection 194
Inheritance 122
Inheritance Default 122
Inheritance Options 124
Initialization 54, 63, 144, 151, 171, 230
Installable security subsystem 21, 65
installation 62, 142, 151, 225
Installation, configuration and initialization

support 62
Installation, configuration, initialization

support 23, 29, 142, 225
Instance Handles 106
Integrity Violation Log 129
Inter-Process Communication 129
interface 312
interlace 312
Interoperation of security context

authorit ies 74

324 OS/2 API Security Developers Guide

Interoperation of SES and ISS 147
IPC 177
IPL 312
ISS 9, 21, 65, 152, 156
ISS API 95, 149
ISS components 85, 149

ISS API 149
ISS Credential Cache 149
ISS Security Daemon 149
ISS Security Kernel 149

ISS Credential Cache 149
ISS Design Guidelines 91
ISS Security Daemon 149
ISS Security Daemon(s) 95
ISS Security Kernel 95, 127, 149, 198
ISS Security Kernel Initialization 158
ISS summary 77
ITSEC 312

K
KB 312
KEK 312
Kernel Callouts Imported from the ISS 152
Kernel level operating system services 31
Kernel Services Exported to the ISS 156
key 312
key administration 312
Key Components 131
key token 312
keyboard 50
Keyboard Activity Detection 193
Keyboard Device Drivers 135
Keyboard Inactivity Detection 194
Keyboard Support 141, 192
Keyboard/Mouse Activity Detection 193
Keyboard/Mouse Inactivity Detection 194
Kilohertz 312
KM 312
KMC 312
KPI 24, 77, 86, 87, 88, 89
KPI for Audit 88
KPI for DAC 87
KPI for Logon 86

KPI for Single Signon 89
KPI for Trusted Program Support 89

L
leading logon type 313
Least Privilege Operation 15
link 313
Loader 150
local area network 313
Local User Flag 115
Lock 44, 49, 51, 60, 61, 62, 191
Lock State 53
Logoff 44, 49, 51, 57, 58, 60, 191
Logoff State 53
logon 50, 51, 56, 57, 58, 59, 86, 190
Logon shell services 23, 28, 43, 130, 189
Logon Shell Services (LSS) Scenarios 198
Logon Shell Services Kernel Programming

Interface 198
logon/logoff 56
LPT 313
LSS 28, 43, 44, 189

AuthoritySource 195
Callout for LSS Functions 198
Change Password 192
CLD API 196
Event Flows 190
Event status 194
Keyboard Activity Detection 193
Keyboard Inactivity Detection 194
Keyboard Support 192
Lock 191
Logoff 191
Logon 190
LSS API 197
LSS KPI 198
Mouse Activity Detection 193
Mouse Inactivity Detection 194
Mouse Support 192
PVD API 196
Shutdown 191
SLD API 194
Trusted Path Support 155, 192
Unlock 190

Index 325

LSS API 140, 197, 281
Error Codes 299
Return Codes 299
SESControlKBDMonitors 281
SESInactivityNotify 282
SESRegisterDaemon 283
SESReturnEventStatus 285
SESReturnWaitEvent 288
SESStartEvent 290
SESWaitEvent 292

LSS event daemons 48
LSS functions 198
LSS keyboard/mouse device driver support 50
LSS KPI 141, 198
LSS policy DLLs 47
LSS Programming Interfaces 140
LSS Scenarios 198

Change Password 212
Create User Profile 215
Delete User Profile 215
Identification and authentication 217
Lock 210
Logoff 208
Logon 198
Process Creation 221
Send Security Context 220
Shutdown 208
Trusted Path 223
Unlock 204

LUF 175

M
Maximum Security Context 110
migrate 313
Modification 127
module 313
mouse 50
Mouse Activity Detection 193
Mouse Device Drivers 135
Mouse Inactivity Detection 194
Mouse Support 141, 192
multi-tasking 313
Multi-User Application Server 41

Multiple concurrently active security
applications 39

Multiple concurrently active users 41
mult iplexer 313
MVDM 154

N
network 313
node 313

O
Object 14, 32, 313
Object Reuse Protection 14
OEM 313
off line encryption 313
on line encryption 313
Operational Assurance 17
Orange Book 10, 313
Order of Events 154
OS/2 Components 150

File System API 150
File System Router 150
I/O Device API 150
Loader 150
Per Task Data Area 150
Task Manager 150
Thread Control Block 150

OS/2 System Calls 152
OS/2 System Calls Supported 98
Overview of key logon shell services

components 46
Overview of key LSS operations 51
Overview of Keyboard/Mouse Support 192
Overview of LSS Event Flows 190

P
PAF 176
panel 313
parent process 70
password 313
Password Change 192
Password validation driver 48

326 OS/2 API Security Developers Guide

Password Validation Driver API 196
Passwords 7
path 313
pause function 314
PCF 314
pel 314
Per Task Data Area 150
Performance 151
Physical Devices 7
PIN 314
pixel 314
plain text 314
pop-up 314
POSIX 24, 35
POSIX gid 35
POSIX uid 35
POSIX unmask 35
Prerequisite Knowledge 4
private key 314
Privilege transition 42
privi leged 23
Privileges and authorities 70
process 24, 32
Process creation 173

Agent Group Handle 173
Agent Process Handle 174
Agent User Handle 173
Authority Flags 176
Authority ID 174
Client Group Handle 173
Client Process Handle 174
Client User Handle 173
EGF 175
EPF 175
EUF 175
LUF 175
PAF 176
SECURE.SYS 174
Status 174
Status Flags 174

process credentials 32
Process Management 129
Process-Status Association 108
Process-User Association 102

processes 24
Programming interfaces 24, 76
Propagate Authority Flag 116
protocol 314
PSC 314
public key 314
PVD 48, 69, 85
PVD API 196, 279

PVDValidatePassword 279
PVD Dynamic Link Library 134
PVDValidatePassword 279

R
RAM 314
Reference Monitor 12
Reserved Handles 105
resolution 314
Resource access control 21, 27, 87
RESTARTUSERSHELL 51, 55, 59, 60, 62
Return Codes 299
reuse 314
RGB 314
RLA 40, 42, 74, 75, 85, 165
RLA and CLA 74
RLA Daemon 149
RLA flag 119
role 314
ROM 314

S
SAF 314
SAPI 314
SCA 70, 86, 87, 88, 89
SCA for Audit 88
SCA for DAC 87
SCA for Logon 86
SCA for Single Signon 89
SCA for Trusted Program Support 89
scanner 314
Scenarios

A Process Sends Its Security Context to an
SCA Process 184

A User Logs on Remotely to an Application
Server 180

Index 327

Scenarios (continued)
An SPA Process Acts as Proxy for Its Client

Processes 186
An Untrusted Process Creates an Untrusted

Child Process 183
Change Password 212
Create User Profile 215
Delete User Profile 215
File System Open Callout 159
Identification and authentication 217
ISS Security Kernel Initialization 158
Lock 210
Logoff 208
Logon 198
LSS 198
Process Creation 221
SCS 180
Send Security Context 220
Shutdown 208
Trusted Path 223
Unlock 204

schema 314
SCS 22, 28, 31, 37, 39, 161

ACA 161
APA 162
CLA 163
Initialization 171
RLA 165
Security Context Authority Roles 161
SLA 166
SPA 167
UIA 170

SCS API 128, 178, 241
Error Codes 299
Return Codes 299
SESControlProcessCreation 241
SESCreateHandleNotify 242
SESCreateInstanceHandle 243
SESCreateSubjectHandle 244
SESDeleteHandleNotify 245
SESDeleteSubjectHandle 246
SESKillProcess 247
SESlogIntegrityViol 248
SESQueryAuthorityID 248
SESQueryContextStatus 249

SCS API (continued)
SESQueryProcessInfo 250
SESQuerySecurityContext 253
SESQuerySubjectHandle 254
SESQuerySubjectHandleInfo 255
SESQuerySubjectInfo 256
SESReleaseSubjectHandle 258
SESReserveSubjectHandle 259
SESResetThreadContext 260
SESSendSecurityContext 261
SESSetContextStatus 262
SESSetSecurityContext 264
SESSetSubjectHandle 266
SESSetSubjectInfo 267

SCS Helpers 156
SCS KPI 129
SCS Programming Interfaces 128
SCS Scenarios 180

A Process Sends Its Security Context to an
SCA Process 184

A User Logs on Remotely to an Application
Server 180

An SPA Process Acts as Proxy for Its Client
Processes 186

An Untrusted Process Creates an Untrusted
Child Process 183

sealing 314
SECURE.SYS 62, 70, 125, 144, 149, 227
security 315
Security Application Components 148

ACA Daemon 149
APA Process 149
CLA Daemon 149
RLA Daemon 149
SLA Daemon 149
SPA Daemon 149
UIA Daemon 149

security architecture 315
Security context 32, 70, 110, 149

Agent Group Handle 173
Agent Process Handle 174
Agent User Handle 173
Authority Flags 176
Authority ID 174
Client Group Handle 173

328 OS/2 API Security Developers Guide

Security context (continued)
Client Process Handle 174
Client User Handle 173
EGF 175
EPF 175
EUF 175
IPC 177
ISS Security Kernel 127
LUF 175
PAF 176
Process creation 173
SECURE.SYS 125, 174
SLA 125
Status 174
Status Flags 174

Security context and trusted program
support 21

Security Context Association 100
Security context at Process Creation 173
Security context authorities (interoperation

of) 74
Security Context Authority Roles 161
Security Context Creation 122
Security Context inheritance 24
Security Context Inherited from Parent

Process 122
Security Context Management 129, 130
Security context services 22, 28, 31, 100, 161
Security Context Services API 178, 241
Security Context Status 113
security credentials 39
security daemon 77
security daemons 68
Security enabling services 21, 27, 315
Security Event Router 98
Security Features 85
Security Functions 7
Security Helpers 99
Security Helpers for File System Services 100,

156
Security Helpers for Security Context

Services 100, 156
Security Kernel 12, 68, 77
Security kernel services 22, 28, 29, 96, 151

Security Kernel Services KPI 156
Security Kernel Services KPI Details 239
Security officer 315
Security Policy 10, 13
Security policy administration tools 21
Security relevant event interception and

routing 31
Security Requirements 7
security server 315
server 315
SES 9, 21, 27
SES and ISS communication 23
SES API 86, 87, 88, 89, 95, 149
SES API Audit Support 156
SES Architecture Implementation 95
SES Components 149

SECURE.SYS 149
Security Context 149
SES API 149
SES Daemons 149
SES Device Driver 149
SES KPI 149
Subject Information 149

SES Daemons 95, 132, 149
SES Development 81
SES Device Driver 95, 133, 149
SES Dynamic Link Library 134
SES Event Management 141
SES KPI 86, 87, 88, 89, 95, 149
SES Overview 19, 27
SESControlKBDMonitors 281
SESControlProcessCreation 241
SESCreateHandleNotify 242
SESCreateInstanceHandle 243
SESCreateSubjectHandle 244
SESDeleteHandleNotify 245
SESDeleteSubjectHandle 246
SESInactivityNotify 282
SESKillProcess 247
SESlogIntegrityViol 248
SESQueryAuthorityID 248
SESQueryContextStatus 249
SESQueryProcessInfo 250
SESQuerySecurityContext 253

Index 329

SESQuerySubjectHandle 254
SESQuerySubjectHandleInfo 255
SESQuerySubjectInfo 256
SESRegisterDaemon 283
SESReleaseSubjectHandle 258
SESReserveSubjectHandle 259
SESResetThreadContext 260
SESReturnEventStatus 285
SESReturnWaitEvent 288
SESSendSecurityContext 261
SESSetContextStatus 262
SESSetSecurityContext 264
SESSetSubjectHandle 266
SESSetSubjectInfo 267
session 315
session key 315
SESStartEvent 290
SESWaitEvent 292
setgid 35
setuid 35
shutdown 44, 49, 191
signature verif ication 315
Single Signon 9, 86, 89, 315
SKS 28, 29, 96, 151

Initialization 151
Installation 151
Performance 151

SKS API 239
Error Codes 299
Return Codes 299

SKS KPI 156
SKS Scenarios 157
SLA 39, 40, 49, 71, 85, 86, 125, 166
SLA Daemon 133, 149
SLA flag 119
SLD 47, 69, 85
SLD API 194, 271

AuthoritySource 195
Event status 194
SLDInit 271
SLDQueryUIA 271

SLD Dynamic Link Library 134
SLDInit 271
SLDQueryUIA 271

Smart Cards 7
software configuration uti l i ty 315
SPA 41, 43, 72, 85, 167
SPA Daemon 149
SPA flag 120
State Flags 108, 114

Effective Group Flag 114
Effective Process Flag 114
Effective User Flag 115
Local User Flag 115
Propagate Authority Flag 116

Status Flags 174
EGF 175
EPF 175
EUF 175
LUF 175
PAF 176

sub-directory 315
Subject 14, 32, 315
Subject handle information 111
Subject Handle Management 128, 130
Subject handle summary 111
Subject handles 23, 102, 110

Agent Group Handle 103
Agent Process Handle 103
Agent User Handle 102
Application Management 105
Client Group Handle 103
Client Process Handle 103
Client User Handle 102
Reserved Handles 105

Subject Info Management 128, 130
Subject Information 149
subsystem 315
system administrator 315
System Architecture 18
System Integrity 18
system logon 70
System logon authority 49
System logon driver 47
System Logon Driver API 194

330 OS/2 API Security Developers Guide

T
Task Manager 150
Thread Control Block 150
thread model 36
threads 23, 36
token 315
token-ring 315
trusted application 69
Trusted Computing Base 9, 12
Trusted Facil ity Management 18
Trusted Path 16
Trusted Path Support 192
Trusted Path Support: 51
Trusted process 41, 42
trusted program 32, 41, 42
Trusted Program Support 9, 89
trusted programs 315
Trusted Recovery 18
trusted server process 42
TRUSTEDPATH 51, 55, 57, 61
TSS 315

U
UIA 40, 47, 48, 71, 72, 85, 86, 170
UIA Daemon 149
UIA Daemons 133
UIA flag 121
umask 35
unlock 44, 50, 51, 60, 61, 62, 190
user 315
user credentials 32
user ID 315
User identification and authentication

(logon) 21
User identif ication authority 48

W
What are the typical components of an ISS 67
What is an ISS 66
What support does SES provide for an ISS 70
wildcards 316
workstation 316

X
XGA 316

Index 331

IBML

Printed in U.S.A.

SG24-4668-00

/XRL/1

Artwork Definitions

id File Page References

ITSLOGO 4668SU
i i

Table Definitions

id File Page References

IATAB 4668CH8
86 86

DACTAB 4668CH8
87 87

AUDTAB 4668CH8
88 88

SINTAB 4668CH8
89 89

TRUTAB 4668CH8
89 89

SUGG 4668CH9
91 91

ROW5 4668C13A
178 178, 178

ODDROW 4668C13A
178

HEAD5 4668C13A
178 179

XROW5 4668CH14
197 197, 197

XODDROW 4668CH14
197 197

XHEAD5 4668CH14
197 197

Figures

id File Page References

8BIGPIC 4668CH4
20 1

19
8BIGP2 4668CH5

28 2
27

8SKS1 4668CH5
30 3

29
8SCS1 4668CH5

32 4
8SCS2 4668CH5

34 5
8SCS3 4668CH5

35 6
8SCS4 4668CH5

36 7
8SCS5 4668CH5

38 8
8LSS1 4668CH5

/XRL/2

46 9
46

8LSS2 4668CH5
54 10

53
8ISS1 4668CH6

66 11
65

8ISS2 4668CH6
67 12

67
8ISS3 4668CH6

73 13
8ISS4 4668CH6

75 14
8ISS6 4668CH6

77 15
SESOVE 4668CH10

96 16
95

SKSARC 4668CH10
97 17

SCSARC1 4668CH10
101 18

SESARC2 4668CH10
104 19

SCSARC3 4668CH10
107 20

SCSARC4 4668CH10
109 21

LSSARC1 4668CH10
132 22

LSSARC2 4668CH10
139 23

SESSYS 4668CH11
148 24

SCSSYS 4668CH13
169 29

168
SCSSCN1 4668C13C

181 30
180

UPCPRO 4668C13C
183 31

183
SCSDDS 4668C13C

184 32
184

SPACP 4668C13C
186 33

186
ICISYS 4668CH15

233 34

/XRL/3

Headings

id File Page References

NOTICES 4668FM
xv Special Notices

ii
PT1 4668PT1

1 Part 1, Developer′ s Guide
xvii, 81, 237

4668CH1 4668PT1
3 Chapter 1, Introduction to Security Enabling Services

4
4668CH2 4668CH2

7 Chapter 2, Security Requirements
4

CH1ORAN 4668CH2
10 2.1, Orange Book Security Criteria

CH1CONP 4668CH2
12 2.1.1, Continuous Protection

CH1TCB 4668CH2
12 2.1.1.1, Trusted Computing Base

CH1REFM 4668CH2
12 2.1.1.2, Reference Monitor and Security Kernel

4668CH4 4668CH4
19 Chapter 3, Security Enabling Services Overview

5
4668CH5 4668CH5

27 Chapter 4, Security Enabling Services
5

CH5PHM 4668CH5
33 4.3.1, Process, Handle and Thread Models

4668CH6 4668CH6
65 Chapter 5, Installable Securi ty Subsystem

5
PT2 4668PT2

79 Part 2, Design Notes
xvii, 4, 91, 237

4668CH7 4668PT2
81 Chapter 6, Introduction to SES Development

82
4668CH8 4668CH8

85 Chapter 7, Building an Installable Securi ty Subsystem
82

CH3LOG 4668CH8
86 7.1, Logon

CH3RAC 4668CH8
87 7.2, Resource Access Control

C3AUDIT 4668CH8
88 7.3, Audit

CH3SSO 4668CH8
89 7.4, Single Signon

CH3TPS 4668CH8
89 7.5, Trusted Program Support

4668CH9 4668CH9
91 Chapter 8, Installable Security Subsystem Design Guidelines

82
4668C10 4668CH10

95 Chapter 9, SES Architecture Implementation
82

SCSHLP 4668CH10
100 9.2, Security Context Services

100
4668C11 4668CH11

147 Chapter 10, Interoperation of SES and ISS
82

/XRL/4

4668C12 4668CH12
151 Chapter 11, Security Kernel Services (SKS)

82, 198
4668C13 4668CH13

161 Chapter 12, Security Context Services (SCS)
83, 91, 221, 223

CH8SCSA 4668CH13
161 12.1, Security Context Authority Roles

C8ACA 4668CH13
161 12.1.1, Acces Control Authority (ACA)

C8APA 4668CH13
162 12.1.2, Agent Process Authority (APA)

CH8CLA 4668CH13
163 12.1.3, Client Logon Authority (CLA)

4668C14 4668CH14
189 Chapter 13, Logon Shell Services (LSS)

83, 113
4668C15 4668CH15

225 Chapter 14, Installation, Configuration, Init ial ization Support
83

PT3 4668PT3
235 Part 3, Appendices

xvi i
4668C16 4668PT3

237 Chapter 15, KPI and API Calls
SKSKAX 4668AX1

239 Appendix A, Security Kernel Services KPI Details
157, 198, 237

SCSAAX 4668AX2
241 Appendix B, Security Context Services (SCS) API Details

180, 237
SLDAAX 4668AX3

271 Appendix C, System Logon Driver API Details
195, 237

CLDAAX 4668AX3
275 Appendix D, Client Logon Driver API Details

196, 237
PVDAAX 4668AX3

279 Appendix E, Password Validation Dr iver API Details
196, 237

LSSAAX 4668AX3
281 Appendix F, Logon Shell Services API Details

197, 237
4668AX1 4668AX4

299 Appendix G, Security Enabling Services Error Codes
237

4668CTS 4668AX5
301 Appendix H, Customer Thoughts on Security Products

237

/XRL/5

Tables

id File Page References

CH6T1 4668CH6
68 1

68
AX2HAN 4668AX2

244 8
244

AX3T1 4668AX3
273 10

272
AX3T2 4668AX3

273 11
272

Processing Options

Runtime values:
Document fileid ... SG244668 SCRIPT
Document type .. USERDOC
Document style ... SDELIB
Profile ... EDFPRF40
Service Level .. 0022
SCRIPT/VS Release ... 4.0.0
Date .. 96.05.17
Time .. 14:51:23
Device .. 3820A
Number of Passes .. 4
Index ... YES
SYSVAR D .. YES
SYSVAR G ... INLINE
SYSVAR V .. ITSCEVAL
SYSVAR X .. YES

Formatting values used:
Annotation .. NO
Cross reference listing .. YES
Cross reference head prefix only .. NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 .. (none)
DVCF value 2 .. (none)
DVCF value 3 .. (none)
DVCF value 4 .. (none)
DVCF value 5 .. (none)
DVCF value 6 .. (none)
DVCF value 7 .. (none)
DVCF value 8 .. (none)
DVCF value 9 .. (none)
Explode .. NO
Figure list on new page ... YES
Figure/table number separation ... YES
Folio-by-chapter .. NO
Head 0 body text .. Part
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation .. NO
Justification ... NO

/XRL/6

Language ... ENGL
Keyboard ... 395
Layout .. OFF
Leader dots ... YES
Master index ... (none)
Partial TOC (maximum level) .. 4
Partial TOC (new page after) .. INLINE
Print example id ′s .. NO
Print cross reference page numbers ... YES
Process value ... (none)
Punctuation move characters,
Read cross-reference fi le .. (none)
Running heading/footing rule .. NONE
Show index entries ... NO
Table of Contents (maximum level) ... 3
Table list on new page .. YES
Title page (draft) alignment ... RIGHT
Write cross-reference fi le .. (none)

Imbed Trace

Page 0 4668SU
Page 0 4668VARS
Page 0 4668FM
Page i 4668EDNO
Page ii 4668ABST
Page xv 4668SPEC
Page xv 4668TMKS
Page xvi 4668PREF
Page xix 4668ACKS
Page xx 4668PT1
Page 5 4668CH2
Page 18 4668CH4
Page 25 4668CH5
Page 64 4668CH6
Page 78 4668PT2
Page 83 4668CH8
Page 90 4668CH9
Page 93 4668CH10
Page 145 4668CH11
Page 150 4668CH12
Page 159 4668CH13
Page 178 4668C13A
Page 180 4668C13C
Page 187 4668CH14
Page 223 4668CH15
Page 233 4668PT3
Page 238 4668AX1
Page 239 4668AX2
Page 269 4668AX3
Page 298 4668AX4
Page 300 4668AX5
Page 308 4668GLOS
Page 316 4668ABRV
Page 331 4668EVAL

	OS/2 Security Enabling Services: A Developer´s Guide
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	International Technical Support Organization Publications
	ITSO Redbooks on the World Wide Web (WWW)
	Acknowledgments

	Part 1. Developer¢s Guide
	Chapter 1. Introduction to Security Enabling Services
	Prerequisite Knowledge
	Chapter Breakdown

	Chapter 2. Security Requirements
	Orange Book Security Criteria
	Continuous Protection
	Security Policy
	Accountability
	Assurance

	Chapter 3. Security Enabling Services Overview
	Installable Security Subsystem (ISS)
	Security Enabling Services
	Security Kernel Services
	Security Context Services
	Logon Shell Services
	Installation, Configuration, Initialization Support
	SES and ISS Communication
	Summary

	Chapter 4. Security Enabling Services
	SES Overview
	Security Kernel Services (SKS)
	Security Relevant Event Interception and Routing (Hooks)
	Kernel Level Operating System Services
	Security Context Services (SCS)
	Process, Handle and Thread Models
	Multiple Concurrently Active Security Applications
	Multiple Concurrently Active Users
	Trusted Program/ Process
	Logon Shell Services (LSS)
	Overview of Key Logon Shell Services Components
	Overview of Key LSS Operations
	Installation, Configuration and Initialization Support (ICIS)

	Chapter 5. Installable Security Subsystem
	What Is an Installable Security Subsystem?
	What Are the Typical Components of an ISS?
	What Support Does SES Provide for an ISS?
	Security Context
	Privileges and Authorities
	Programming Interfaces
	Installable Security Subsystem Summary

	Part 2. Design Notes
	Chapter 6. Introduction to SES Development
	Chapter Breakdown

	Chapter 7. Building an Installable Security Subsystem
	Logon
	Resource Access Control
	Audit
	Single Signon
	Trusted Program Support

	Chapter 8. Installable Security Subsystem Design Guidelines
	Chapter 9. SES Architecture Implementation
	Security Kernel Services
	Security Event Router
	Security Helpers
	Security Context Services
	Process-User Association
	Process-Status Association
	Definition of Security Context
	SCS Programming Interfaces
	Logon Shell Services
	Key Components
	Definition of Local System Logon
	Definition of a Guest User
	Overview of Keyboard/ Mouse Support
	LSS Programming Interfaces
	Installation, Configuration, Initialization Support
	Installation
	Configuration
	Initialization

	Chapter 10. Interoperation of SES and ISS
	Chapter 11. Security Kernel Services (SKS)
	Kernel Callouts Imported from the ISS
	Callouts for Security Relevant OS/ 2 System Calls
	Callouts for Callgate Level Support
	Callouts for Multiple Virtual DOS Machine Support
	Callouts for Logon Shell Services Trusted Path Support
	Callouts for Security Enabling Services API Audit Support
	Kernel Services Exported to the ISS
	Security Helpers for File System Services
	Security Helpers for Security Context Services
	Security Kernel Services KPI
	Security Kernel Services Scenarios
	ISS Security Kernel Initialization
	File System Open Callout

	Chapter 12. Security Context Services (SCS)
	Security Context Authority Roles
	Acces Control Authority (ACA)
	Agent Process Authority (APA)
	Client Logon Authority (CLA)
	Remote Logon Authority (RLA)
	System Logon Authority (SLA)
	Server Process Authority (SPA)
	User Identification Authority (UIA)
	Initialization of Security Context Services
	Establishment of Security Context at Process Creation
	Association of Security Context with OS/2 IPC
	Security Context Services API
	SCS Scenarios
	A User Logs on Remotely to an Application Server
	An Untrusted Process Creates an Untrusted Child Process
	A Process Sends Its Security Context to an SCA Process
	An SPA Process Acts As Proxy for Its Client Processes

	Chapter 13. Logon Shell Services (LSS)
	Overview of LSS Event Flows
	Logon/ Unlock
	Lock/ Logoff/ Shutdown
	Change Password
	Overview of Keyboard/ Mouse Support
	Trusted Path Support
	Keyboard/ Mouse Activity Detection
	Keyboard/ Mouse Inactivity Detection
	System Logon Driver API
	Client Logon Driver API
	Password Validation Driver API
	Logon Shell Services API
	Logon Shell Services Kernel Programming Interface
	Callouts to the ISS Security Kernel for LSS Functions
	Logon Shell Services (LSS) Scenarios
	Logon
	Unlock
	Logoff, Shutdown
	Lock
	Change Password
	Create User Profile, Delete User Profile
	Identification and Authentication
	Send Security Context
	Process Creation
	Trusted Path

	Chapter 14. Installation, Configuration, Initialization Support
	Installation
	Configuration
	CONFIG. SYS
	SECURE. SYS
	Initialization

	Part 3. Appendices
	Chapter 15. KPI and API Calls
	Chapter Breakdown

	Appendix A. Security Kernel Services KPI Details
	Appendix B. Security Context Services (SCS) API Details
	B. 1 SESControlProcessCreation
	B. 2 SESCreateHandleNotify
	B. 3 SESCreateInstanceHandle
	B. 4 SESCreateSubjectHandle
	B. 5 SESDeleteHandleNotify
	B. 6 SESDeleteSubjectHandle
	B. 7 SESKillProcess
	B. 8 SESlogIntegrityViol
	B. 9 SESQueryAuthorityID
	B.10 SESQueryContextStatus
	B.11 SESQueryProcessInfo
	B. 12 SESQuerySecurityContext
	B. 13 SESQuerySubjectHandle
	B. 14 SESQuerySubjectHandleInfo
	B. 15 SESQuerySubjectInfo
	B. 16 SESReleaseSubjectHandle
	B. 17 SESReserveSubjectHandle
	B. 18 SESResetThreadContext
	B.19 SESSendSecurityContext
	B.20 SESSetContextStatus
	B.21 SESSetSecurityContext
	B. 22 SESSetSubjectHandle
	B.23 SESSetSubjectInfo

	Appendix C. System Logon Driver API Details
	C. 1 SLDInit
	C. 2 SLDQueryUIA

	Appendix D. Client Logon Driver API Details
	D. 1 CLDInit
	D. 2 CLDQueryCLA

	Appendix E. Password Validation Driver API Details
	E.1 PVDValidatePassword

	Appendix F. Logon Shell Services API Details
	F. 1 SESControlKBDMonitors
	F. 2 SESInactivityNotify
	F. 3 SESRegisterDaemon
	F.4 SESReturnEventStatus
	F. 5 SESReturnWaitEvent
	F.6 SESStartEvent
	F.7 SESWaitEvent

	Appendix G. Security Enabling Services Error Codes
	Appendix H. Customer Thoughts on Security Products
	Glossary
	A
	B
	C
	D
	F
	E G
	H
	K
	I
	L N
	O
	M
	P
	R
	S
	T
	U
	W
	X
	List of Abbreviations
	Index
	A
	C
	B
	E
	D
	H
	F
	I
	G
	L
	K
	N
	O
	M
	P
	R
	S
	T X
	U
	W

