International Technical Support Organization 5624-4640-00

The OS/2 Debugging Handbook - Volume |
Basic Skills and Diagnostic Technigues

February 1996

International Technical Support Organization
Boca Raton Center

International Technical Support Organization 5624-4640-00

The OS/2 Debugging Handbook - Volume |
Basic Skills and Diagnostic Technigues

February 1996

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (February 1996)
This edition applies to IBM OS/2 Warp Version 3.0.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLPC Building 014-1 Internal Zip 5220

1000 NW 51st Street

Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

O Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The OS/2 Debugging Handbook Library

The following information describes the four volumes that comprise the 0OS/2
Debugging Handbook library. The graphic of the opened book denotes the
volume that you are currently reading.

Volume |, Basic Skills and Diagnostic Techniques, SG24-4640.

This volume introduces the concepts of debugging with practical examples. Also
contained in this book is a CDROM version of the entire library, which is
viewable using the OS/2 INF View utility.

% Volume I, Using the Debug Kernel and Dump Formatter, SG24-4641.

This volume provides necessary information to set up and use the Kernel Debug
and Dump Formatter tools. Also this guide serves as a command reference for
these products.

% \olume Ill, System Trace Reference, SG24-4642.

This volume includes all system tracepoints contained within OS/2.

% Volume IV, System Diagnostic Reference, SG24-4643.

This volume provides details of internal structures used by OS/2.

[J Copyright IBM Corp. 1996 iii

iv o0s/2 Debugging

Abstract

This publication is one of four volumes which together provide information and
reference materials intended to help perform OS/2 debugging.

This volume provides an introduction to OS/2 debugging with a section of worked
examples. The later worked examples provide an aid to the understanding of
the debug process.

This document is intended for use by service personnel, system programmers
and software developers.

Note that this book has been used in conjunction with a hands-on OS/2
debugging class run by IBM.

(361 pages)

[J Copyright IBM Corp. 1996 \'

Vi 0S/2 Debugging

Contents

The OS/2 Debugging Handbook Library iii
Abstract L v
Special Notices xiii
Preface XV
How This Document is Organized XVii
Related Publications Xviii
International Technical Support Organization Publications Xviii
ITSO Redbooks on the World Wide Web (WWW) XiX
Acknowledgments XX
Chapter 1. Approach to Problem Solving 1
1.1 List of Necessary Skills L 1
1.2 Collecting Documentation 2
1.3 Hardware Architecture 4
1.3.1 Address Components 4
1.3.2 Protected Mode 5
1.3.3 Selector Format 6
1.3.4 Privilege Levels 7
1.3.5 Descriptor Tables 8
1.3.6 The Selector Registers 10
1.3.7 When Checking is Done 11
1.3.8 Descriptor Examples 12
1.4 Exercise 1: Selectors and Descriptors 14
1.5 Address Mapping 16
1.5.1 Paging Overview 16
1.5.2 Page Table Entries 17
1.5.3 Page Table Contents 18
1.6 Data Format in Storage 19
1.7 Exercise 2: Paging, Addresses, Data 20
1.8 Instruction Set 23
1.8.1 Register Review 23
1.8.2 Execution 23
1.8.3 General Registers 24
1.8.4 Machine Instructions L 24
1.8.5 Typical Instructions 25
1.8.6 The System Flags 27
1.8.7 Unassembled Instructions 28
1.8.8 Observations About Unassembling from an Unknown Starting Place 29
1.9 Exercise 3: Unassembling and Reading Instructions 30
1.10 Exceptions 31
1.10.1 Definition of Fault, Trap, Aborts and Interrupts 31
1.10.2 Hardware Error Codes 32
1.10.3 Simultaneous Exceptions 33
Chapter 2. The Address Space Picture 35
Chapter 3. OS/2 Implementation Details 37
3.1 Shared Memory 37

[J Copyright IBM Corp. 1996 Vii

viii

OS/2 Debugging

3.2 Address Tiling

3.3 Why Thunk?

3.4 Address Transformations (Thunks)
3.4.1 16:16 to 0:32 Thunk
3.4.2 0:32to 16:16 Thunk
3.4.3 Simultaneous 16-Bit and 32-Bit Descriptions of Virtual Storage

Chapter 4. Stacks
4.1 Near CALL and RETurn
4.2 Far CALL and RETurn
4.3 Passing Parameters
4.4 Receiving Parameters
45 Why do we Care About the Pascal Convention?
4.6 Single Stack Frame
4.7 An Example of Using the Stack
4.8 Stack Example
4.9 Multiple Stack Frameso
4.10 A Stack From a Dump

Chapter 5. Application Documentation L.
5.1 The .MAP File
5.2 The .COD File
5.3 Exercise 4: Application Documentation
5.3.1 A 16-Bit Map File
5.3.2 A 16-Bit Code File
5.3.3 Questions
5.34 A 32-Bit Map File
5.3.5 A 32-Bit .ASM File, Produced by CSET/2
5.3.6 Questions
5.4 Exercise 5: Unwinding a 16-Bit Stack
5.5 Exercise 6: Unwinding a 32-Bit Stack
5.6 Requesting Kernel Services oL
5.6.1 The Task State Segment (TSS)
5.6.2 The Call Gate
5.6.3 Another View
5.6.4 Call Gate Contents
5.7 Exercise 7: Looking at a Ring Transition
5.7.1 Part 1: Introduction to the Debug Kernel
5.7.2 Part 2: Some Techniques
5.7.3 Part 3: Finding the TSS
5.7.4 Part 4: Watching a Ring Transition
5.8 Exercise 8: Identifying the Owner of Storage

Chapter 6. Steps to Diagnose a Trap o

Chapter 7. The OS/2 System Trace
7.1 TRACEBUF and TRACEFMT
7.2 TRACE and TRACE Processing
7.3 TRACEFMT Processing
7.4 Static and Dynamic Trace, and Files Used
7.5 Dynamic Trace Processing
7.5.1 OS/2 Predefined Dynamic Trace Events

Chapter 8. TRCUST, the Dynamic Trace Customizer
8.1 File Naming Convention

8.2 The Syntax for Processing a TSF File 105

8.3 The Syntax for Combining .TFF Files 105
Chapter 9. The Layout of a Trace Source File 107
9.1 The Trace Source File Header 107
9.2 TYPELIST and GROUPLIST Statements 109
9.3 The Tracepoint Definition 110
9.3.1 TRCUST and Debugging Options 111
9.3.2 Specifying Where to Cause the Trace Event 111
9.3.3 The TP Parameter - Define Where a Tracepoint Occurs 112
9.3.4 OPCODE, TYPE and GROUP Statements 113
9.3.5 TYPE and GROUP Statements 113
9.3.6 The Description of the Tracepoint 114
9.4 Using FORMAT Strings to Format the Trace Data 114
9.4.1 Specifying the Data to Trace 116
9.4.2 Gathering Data from Memory: Address Specifications 117
9.4.3 Gathering Data from Memory: Length Specifications 118
9.4.4 Specifying Data from Memory 119
9.5 Examples 120
9.5.1 Example 1 121
9.5.2 Example 2 123
9.5.3 Example 3 . . . 125
Chapter 10. Steps to Diagnose a Hang 127
10.1 Steps to Diagnose a Waito 127
10.2 Steps to Diagnose a Loop 127
Chapter 11. Serialization and Priorities in OS/2 129
11.1 Brute Force Serialization 129
11.1.1 Uniprocessor Method - Disable Interrupts 129
11.1.2 Multiprocessor Methods - Spin Locks 129
11.1.3 DosEnterCriticalSection and DosExitCriticalSection 130
11.1.4 DosSuspendThread and DosResumeThread 130
11.2 Semaphores 130
11.2.1 16-Bit Semaphores 131
11.2.2 32-Bit Semaphores 132
11.3 Dispatching Priorities 132
11.4 The Dispatcher, Priorities and Dispatching Classes 133
11.4.1 How to Display Dispatching Priority 134
11.4.2 The Status of a Thread 134
Chapter 12. A Form to Use for Unwinding Stacks 137
Chapter 13. Advanced Guide to Hang Analysis 139
13.1 The Wait Condition - Diagnostic Techniques 140
13.1.1 Memory Management and Ownership Topics 140
13.1.2 Thread Scheduling and Dispatching Topics 175
13.2 Program Design Issues and Weaknesses 211
Chapter 14. Worked Exampleso 213
14.1.1 How to Find File System Information 213
14.1.2 Exploring Memory Management 245
14.1.3 Exploring 32-bit Presentation Manager Under WARP 273
14.1.4 Dump Analysis of Loops in Ring 0 Code 318

Contents iX

Appendix A. Minimal Command Reference 329
A.1 To Display Descriptors 329
A.2 To Display Page Table Entries 329
A.3 To Display Storage lItself 330
A.4 Miscellaneous Commandso 330
A.5 Controlling Execution with the Debug Kernel 331
A.6 Device Driver Mini-Reference L. 332
A.7 Device Help function Numbers 334
A.8 Partial Content of the System Anchor Segment (SAS) 334
A.9 Partial Content of the File System Control Block (FSC) 335
Glossary 337
List of Abbreviations 353
Index . . . L 355

X 0OS/2 Debugging

Figures

©CXNTR~WONE

WNNRNNMNNNNMNNNNRRRRRERRRRR
SOPDIODNRWONPOO®R®ND O A ®WNEO

[J Copyright IBM Corp. 1996

Ring Protection Diagram
Virtual Address Space Regions
Virtual Address Space Management
Private Arena Private Data L.
Private Arena Shared Data
Shared Global Data
Shared Arena Instance Data
Page Management
Page Management, Storage Paged Out
CS Alias of Shared Instance Data
Multiple Alias in Multiple Processes
Scheduler States for a Finite State Machine
Open File, Application to System,
Open File, System View
Open Device, System View
Shared File with Two Locked Ranges
Non-PM Application Program Model
PM Application Program Model,
PM System Input Queue Processing Overview
PM Application Message Processing Overview
WinGetMsg Essential Processing
WinSendMsg Essential Processing
Miscellaneous PM Processing
BadApp Dialog Processing
Query Hung Process Processing,
PM Message Queue Header Viewed as Doublewords
PM Window Structure (WND) Viewed as Double-words
PM Send, Queue and Queue Message Structures
PM Application Anchor Block
Stack Frames for Common Entry Points Viewed as Doublewords

Xi

Xii 0S/2 Debugging

Special Notices

This publication is intended to help service personnel, system programmers and
software developers to understand the concepts and application of debugging
techniques. The information in this publication is intended as a supplement to
already published specifications of any programming interfaces that are provided
by IBM Warp OS/2 Version 3. See the PUBLICATIONS section of the IBM
Programming Announcement for IBM Warp OS/2 Version 3 for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

[J Copyright IBM Corp. 1996 Xiii

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

IBM 0s/2
Presentation Manager Workplace Shell

The following terms are trademarks of other companies:

PC Direct is a trademark of zZiff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

MicroFocus Cobol MicroFocus Corporation

Other trademarks are trademarks of their respective companies.

Xiv 0S/2 Debugging

Preface

Debugging problems is essentially an iterative process of hypothesis, test and
conclusion that aims to eliminate the irrelevant and therefore focus on the
probable causal area.

To engage this process successfully one needs to be equipped with an innate
ability to think laterally coupled with sufficient knowledge of the environment in
which the problem persists and above all else to be able to use the tools that
extract information from the system under diagnosis.

This scenario applies as much to first level problem determination (PD) as it
does to the software developer who is engaged in detailed analysis of his
programs’ behavior.

Information and tools to aid first level problem determination is relatively
accessible. Technical literature is available from IBM and book stores that will
fulfill the needs of the first level PD analyst. For example, the reader is invited to
consult the following IBM redbook publications to achieve an all-round high-level
technical appreciation of the OS/2 environment:

The Technical Compendium Volume 1 - Control Program
The Technical Compendium Volume 2 - DOS and Windows Environment

The Technical Compendium Volume 3 - Presentation Manager and Workplace
Shell

The Technical Compendium Volume 4 - Application Development

The Technical Compendium Volume 5 - The Print Sub-system

The problem analysis level that is less well provided for is that which involves
internal knowledge of the OS/2 operating system and its diagnostic tools. This is
the level at which service personnel, system programmers and software
developers work. It is this audience to which the OS/2 Debugging Handbooks
are directed.

An inevitable consequence of working at a deep technical level is that the
amount of information one could amass is vast. Given time constraints and the
need to publish useable material before it became obsolete we had to make
certain compromises for the first edition. The following principles guided us in
making decisions about which material to include:

Material that is adequately documented elsewhere is referenced, but not
included.

Accurate reference documentation for the diagnostic tools and facilities
available for OS/2 has been given priority over worked examples and OS/2
Internals reference material.

Internals information has centered around the base operating system, that is,
the kernel.

It is hoped to remedy some of these short-comings in future revisions of this
book and in companion volumes.

The current printed edition contains full reference material for the following OS/2
System diagnostic facilities:

[J Copyright IBM Corp. 1996 XV

XVi

0OS/2 Debugging

System Trace
System Dump
Kernel Debugger

In addition to these topics, included is an introductory guide to problem
determination. This provides a resumé of the hardware and software
environment and an introduction to using the dump formatter and kernel
debugger.

Throughout this book it is assumed the availability and familiarity with two
co-requisite publications:

The Intel Pentium Family User's Manual, Volume 3: Architecture and
programming manual, ISBN 1-55512-227-2, Intel order number 241430-003.

This should be consulted as the authoritative source for hardware
architectural information.

The Design of OS/2 by H.M. Deitel and M.S. Kogan.

This should be consulted for an overview of the internal operation and
architecture of OS/2.

This book is supplied with a CD-ROM whose contents are:

Sample exercises to accompany Chapter 1, “Approach to Problem Solving”
on page 1. These take the form of system dumps of typical problems in
application programs.

Online version of this book. This is slightly more advanced than the printed

version and includes more worked examples. This is an .INF file and should
be viewed using the OS/2 VIEW.EXE program. Much use has been made of

hypertext links, which direct the user to the glossary. From the glossary it is
possible to link to related material in other sections of the book.

The OS/2 Problem Determination Package (OS2PDP), which includes the
dump formatter, symbol files and trace customizer (TRCUST).

Unless otherwise stated the material in this book may be assumed to be
applicable to OS/2 Warp version 3.0 (ALLSTRICT Kernel).

As indicated above, work on this subject matter can never be complete. It is
intended to build on and update the material in this edition. In order to address
the areas in most need of attention you the reader are invited to fill in the
Reader's Comment Form with your suggestions.

How This Document is Organized
The document is organized as follows:
Chapter 1, “Approach to Problem Solving”

This chapter provides an introduction to debugging and an approach to
problem solving.

Chapter 2, “The Address Space Picture”
This chapter describes the address space picture of OS/2.
Chapter 3, “OS/2 Implementation Details”

This section details the memory implementation and information about
thunking.

Chapter 4, “Stacks”
This chapter describes how most OS/2 applications use the stack.
Chapter 5, “Application Documentation”

Documentation that the compiler can optionally generate is described in this
chapter.

Chapter 6, “Steps to Diagnose a Trap”
A brief introduction to diagnosing a trap.
Chapter 7, “The OS/2 System Trace”

This chapter talks about the trace facility that OS/2 has and how it is enabled
via the CONFIG.SYS file.

Chapter 8, “TRCUST, the Dynamic Trace Customizer”

Shows how OS/2 provides a mechanism by which developers may
dynamically apply trace points in their application modules.

Chapter 9, “The Layout of a Trace Source File”

This Chapter describes the source code file in detail.
Chapter 10, “Steps to Diagnose a Hang”

A brief introduction to diagnosing a hang.

Chapter 11, “Serialization and Priorities in OS/2”
This section describes the various ways to serialize access to resources.
Chapter 12, “A Form to Use for Unwinding Stacks”

A form for documenting the unwinding of stacks.
Chapter 13, “Advanced Guide to Hang Analysis”
This section describes the various features of a hang.
Chapter 14, “Worked Examples”

This chapter contains worked examples to illustrate the use of some of the
debugging tools.

Appendix A, “Minimal Command Reference”

This appendix contains a small command reference.

Preface XVili

Related Publications

Throughout this book we assume the availability and familiarity with two
co-requisite publications:

The INTEL486 Microprocessor Programmer's Reference Manual, ISBN
1-55512-159-4

The Intel Pentium Family User's Manual, Volume 3: Architecture and
Programming Manual, ISBN 1-55512-227-2

The Design of OS/2 by H.M. Deitel and M.S. Kogan, ISBN 0-201-54889-5
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

The OS/2 Technical Library Control Program Programming Reference Version
2.00, S10G-6263-00

0OS/2 2.0 Proc Lang 2/REXX Ref, S10G-6268-00

0S/2 2.0 Proc Lang 2/REXX User Guide, S10G-6269-00

0S/2 WARP Control Program Programming Guide, G25H-7101-00
0S/2 WARP Control Program Programming Ref, G25H-7102-00
0S/2 WARP PM Basic Programming Guide, G25H-7103-00

0S/2 WARP PM Advanced Programming Guide, G25H-7104-00
0S/2 WARP GPI Programming Guide, G25H-7106-00

0S/2 WARP GPI Programming Ref, G25H-7107-00

0S/2 WARP Workplace Shell Programming Guide, G25H-7108-00
0S/2 WARP Workplace Shell Programming Ref, G25H-7109-00
0S/2 WARP IPF Programming Guide, G25H-7110-00

0S/2 WARP Tools Reference, G25H-7111-00

0S/2 WARP Multimedia App Programming Guide, G25H-7112-00
0S/2 WARP Multimedia Subsystem Programming, G25H-7113-00
0S/2 WARP Multimedia Programming Ref, G25H-7114-00

0S/2 WARP PM Programming Ref Vol I, G25H-7190-00

0S/2 WARP PM Programming Ref Vol Il, G25H-7191-00
Technical Reference - Personal Computer AT, Part Number 1502494

PS/2 and PC BIOS Interface Technical Reference, Part Number 68X2341

International Technical Support Organization Publications
0S/2 Warp Connect, GG24-4505
0S/2 Warp Generation, Vol.1, SG24-4552
0S/2 Warp Version 3 and BonusPak, GG24-4426
Multimedia in Warp, GG24-2516

The Technical Compendium Volume 1 - Control Program, GG24-3730

XViii 0S/2 Debugging

The Technical Compendium Volume 2 - DOS and Windows Environment,
GG24-3731

The Technical Compendium Volume 3 - Presentation Manager and Workplace
Shell, GG24-3732

The Technical Compendium Volume 4 - Application Development, GG24-3774
A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:
International Technical Support Organization Bibliography of Redbooks,
GG24-3070.
To get a catalog of ITSO redbooks, VNET users may type:
TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS
as ITSOCAT TXT. This package is updated monthly.

—— How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-445-9269. Most major credit cards are accepted. Outside the
USA, customers should contact their local IBM office. Guidance may be
obtained by sending a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. I1BM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)

Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser (such as
WebExplorer from the OS/2 3.0 Warp BonusPak) to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. Point your web
browser to the IBM Redbooks home page:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Preface XiX

Acknowledgments

The authors of this book are:

Pete Guy
IBM SDO, Austin

Richard Moore
IBM PSP EMEA

Redbook project developed by:

Tim Sennitt
ITSO Boca Raton, Center

This book could not have reached publication without the encouragement, help
and support from a number of colleagues and friends. In particular we would
like to thank the following:

Tim Sennitt for his help in preparing the printed material and doing much of
the donkey-work to bring this to publication.

Joanne Rearnkham, Barry Bryan and David Jaramillo for their support in
enabling access to the materials necessary to produce this book.

Chris Perritt and Glen Brew for making available the original Design
Workbook and Functional Specifications for OS/2 2.0.

Charlie Schmitt for his original work on converting the kernel debugger code
into a dump formatter.

Jeff Mielke and David Jaramillo for their work on PMDF, the structure
compiler and continued work on the dump formatter.

Allen Gilbert for making available documentation on System Trace, which
has been reproduced in an edited form in this book. Also, for making
available an early version of the dump formatter without which it would not
have been possible to develop the original Dump Formatter class.

Doug Azzarito for supplying the material on Kernel Debugger Remote Debug
Setup.

James Taylor for providing the basis of the lab exercises relating to PM
hangs.

Marie Jazynka, one of the first OS/2 debuggers, for patient encouragement of
a great many OS/2 debugging people.

Our management teams, without whose foresight and support none of this
work would ever have started. These include:

Hermann Lamberti General Manager for PSM EMEA; Gordon Bell -
director PSM EMEA Technical Marketing; Chris Brown - manager PSM
OEM and Enterprise Technical Marketing and Brian Rose - manager PSM
Project Office; Roy Aho - Director of the Solution Developer Technical
Support Center, for encouraging the beginnings of this several years ago;
Terry Gray, manager of Platform Competency and Operation, within
Solution Developer Technical Support, Austin.

Finally to Sarah-Jane and Shelly, for supporting many very extended working
days and weeks.

XX 0S/2 Debugging

Chapter 1. Approach to Problem Solving

In order to succeed at low-level program problem diagnosis, one must have
several skills. None of these is particularly difficult, but many are foreign to
today's programmers.

At first, it will appear that each problem is solved with a different technique.
Study of the methods used to solve problems yields the fact that the several
skills are used as appropriate, virtually as subroutines, and without thought, by
experienced analysts.

The intent of this material is to provide the basic knowledge and to illustrate
each of the skills separately, to aid understanding. Trying to solve problems
without the basic skills can be extremely frustrating, at best.

The fundamentals include knowledge of hardware operation, software
conventions, and basic use of tools to display the data sought. Once the
fundamentals are understood, it is time to begin using them to solve problems,
because one can then concentrate on building the problem solving skill.

Application traps are perhaps the easiest problems to approach, so they are
explained after the basic skills. Similarly, traps in privileged code are only
incrementally more difficult.

Once some experience in solving traps has been gained, it is reasonable to
extend one's skills by exploring reasons for waits and loops, collectively known
as hangs, or to learn the additional functions provided by Symmetric
Multiprocessor (SMP) systems, as well as the challenges in properly serializing
them when needed.

1.1 List of Necessary Skills
The following are fundamental skills needed:
A good knowledge of how the hardware protection mechanisms work.
A good knowledge of what any instruction actually does.
A good knowledge of a few primary software conventions:
How a stack is used and what information is in it.
How to use the stack data for debugging.

How to use optional program documentation to get from a failing
instruction to the actual line of the program which contains it.

How to find the program’s variables in storage.

How to obtain the above documentation for some IBM languages.
How to collect a dump of a system at the point of failure.

How to use the available analysis tools.

How to determine the owner of a part of storage,

and which processes have access to that storage.

And that's what this material is designed to teach!

[J Copyright IBM Corp. 1996

1.2 Collecting Documentation

If the problem can be reliably reproduced in a development environment, do it.
This is the fastest way to get the problem fixed. When you cannot, try to get a
good set of starting documentation.

It is possible to acquire and install a replacement for the OS/2 kernel which is
the same as the one being replaced, except that it has debugging facilities and a
debug interface to a serial port, COM2. If you install the wrong debug kernel, no
one can predict the results. If you install the correct version, you will need to
have a terminal emulation program (or ASCII terminal) to access the debug
interface. The capabilities of this debug tool are essentially unlimited, and there
is no protection from accidental entry errors. Its use is not a trivial task, nor one
to be lightly undertaken.

It is often possible to collect enough information about a problem to diagnose its
cause by creating customized trace entries specifically for that particular
problem. For this to work well, the problem must be reproducible, and the trace
buffer must be captured while the data gathered is still present.

Most people who have worked in a technical support role will agree that often
the largest obstacle to solving a problem is collecting enough useful information
about it. We will briefly discuss how to get enough useful data that problem
solving can start in most cases. Be aware that frequently there will be some
additional useful information, which can be gathered when the need for it is
discovered, and that what is outlined here is not a complete list, by any means.

It is important to collect as complete a set of volatile data as possible from a
single failure. If it is not gathered, it will be lost, perhaps requiring another
occurrence of the problem in order to get needed information.

It is generally possible to use either an interactive debugger or a dump to
diagnose either traps or hangs in an application.

For application problems, particularly traps, a good set of documentation
includes the following:

A statement of what sequence of events leads to the problem

The trap screen, if a trap is involved

A storage dump, with system trace data

All the executable modules involved in the failure

Optional application documentation, including:

- all source files

- .map files, produced by the linker

- .LST and .COD or .ASM files, produced by the compiler
The storage dump is the only thing which is volatile. The rest can be collected

whenever the need is discovered. To collect the first item, perform the following
steps:

2 0s/2 Debugging

— Warning

This will drastically change OS/2 behavior when a trap occurs. 0OS/2 will not
control the failure, but will instantly and irrevocably stop the system, and
initiate a storage dump. There will be no shutdown of the Workplace shell,
databases, file systems (or lazy-write buffers) or anything else. It can be as
disruptive as a power failure. It is possible to lose files or parts of files, but
unlikely.

Prior to WARP: execute the command CREATEDD A:

This will prepare a diskette for taking a dump. The diskette will work only once.
This is not required for WARP, nor for later levels of 2.11. A quick way to
discover if it is required is to read the prompt which asks for the diskette at the
beginning of the process. If CREATEDD is required, the prompt asks for the
diskette prepared by CREATEDD, otherwise it asks for a formatted diskette.

Preparation:

1.
2.

Save the current CONFIG.SYS

Edit CONFIG.SYS

a. If the line is not already present, add a line which reads TRAPDUMP=0N
b. Add a line which reads TRACEBUF=63 to enable the system trace

c. Add a line which reads TRACE=ON to turn on the system trace

d. Optionally, add a line which reads TRACE=0FF,4,6,7

e. Optionally, turn LAZYWRITE off, so data goes directly to disk.

. Locate some formatted diskettes to use for a storage dump.

Estimate about 2MB of RAM per diskette; usually one diskette more than that
number is needed. For very large systems, estimate 1.5MB per diskette.
The dump process will not format.

. Reboot the system so that the changes take effect.

. Restore the original CONFIG.SYS, so you do not have to reboot an extra time

to put things back to normal, after collecting the dump.

Acquiring the storage dump:

1.
2.

Cause the application to trap, that is, reproduce the problem.

Insert the CREATEDD diskette, if created, otherwise insert the first formatted
diskette.

If you can read the screen, follow directions every time you hear one or
more beeps.

If you cannot read the screen, you can still successfully get a dump, by
listening for a beep. Insert the next diskette every time you hear a single
short beep. When the dump is almost complete, there will be a very
distinctively different series of beeps. At this point, reinsert the first diskette.

Very soon after the first diskette is reinserted, the dump will complete.
Remove the diskette.

0S/2 will reboot automatically in most cases. Expect autocheck to run on
HPFS drives during the boot.

Chapter 1. Approach to Problem Solving 3

7. Run CHKDSK on the drives as soon as convenient.

1.3 Hardware Architecture

This section explains how the hardware operates in protected mode, what forms
of protection exist, how they operate, and what happens when a program
attempts to violate one or more of the protection mechanisms.
The three protection mechanisms in 32-bit OS/2 are:

1. Privilege

2. Description

3. Address mapping
All three are active at all times when 32-bit OS/2 is running protected mode

programs. Only address mapping is active when 32-bit OS/2 is running a VDM in
V86 mode.

1.3.1 Address Components

4

0OS/2 Debugging

All addresses in x86 processors are composed of two parts:

Addresses are usually written with a colon separating the two parts, for
example, selector:offset.

1. A segment or selector
2. An offset

The offset part will be covered during the review of typical machine
instructions, because it is straightforward, and the same in real and
protected modes.

These two parts are implicitly or explicitly specified by every instruction that
references memory for either or both operands. Generally, the selector is
implied and the offset is specified but there are exceptions to this.

1.3.1.1 NEAR and FAR Addresses
Because there are two parts of an address and an item may or may not be in a
current segment, there are two ways to specify the address of a data item.

A NEAR address is an offset without specifying a selector. This is a very efficient
way to address data because the overhead of loading a selector register and
fetching the descriptor is avoided. The selector to use is implied, and is
normally already loaded.

A FAR address contains both a selector and an offset in protect mode. This is
slower and more cumbersome because both address components must be
specified as well as causing the overhead of altering a selector register. When a
far address is displayed from storage (as two words), the offset will be seen in
the left word, and the segment or selector in the right word.

A FAR address contains a segment and an offset in real or V86 mode. The
overhead is not so bad as in protect mode, because there are no descriptors to
fetch when a segment register is loaded.

1.3.1.2 Real Mode and V86 Mode
Real and V86 Modes

CS = Code Segment SS = Stack Segment
DS = Data Segment ES = Extra Segment
for 386 and Tlater,
FS = another data segment GS = another data segment

In REAL or V86 modes, say ' segment registers’
In PROTECT MODE, say 'selector registers'

Note: In real mode each segment register has a 16-bit number. The segment
number is shifted left 4 bits, then added to the offset value. There is no checking
of any kind.

DS=1234, offset=5678

12340
5678

This is equivalent to any of the following:
segment 179B, offset 8;
segment 1790, offset BS;
segment 1267, offset 5348;

or many other possibilities.

1.3.2 Protected Mode

In protected mode, all storage is described by the hardware, using tables
maintained by the software. The description includes the location, and size of
the storage segment, as well as the type of storage. The storage type further
constrains how it may be used.

This section concentrates on the selector part of the address because the offset
is handled in a very simple and consistent fashion once the memory segment
has been located and the validity of the access has been verified.

1.3.2.1 Descriptors

A selector specifies a descriptor, which describes a memory segment. The
attributes described include the base or starting address of the memory
segment, the size of the segment and what accesses are allowed.

Protected mode addressing in a 386 or later begins with Descriptor Tables which
are described by hardware registers. There are three Descriptor Tables, each of
which is discussed below after supplying the format of individual descriptors.
The tables contain the descriptors and the descriptors are selected by an
interrupt number or by the content of a selector register.

Chapter 1. Approach to Problem Solving 5

An application descriptor is required for all accesses to instructions and to data.
For most segments, the limit is the largest valid offset. If the offset is larger than
the limit, a general protection exception occurs. The exception to this rule
occurs for data segments which are expand down. In this case, the offset must
be greater than the content of the limit field. The system stack (ring 0) is an
example of an expand down segment.

To find the linear address of the data element, the processor adds the offset
(obtained from the instruction) to the base address of the segment. That's the
end of the discussion for offsets!

There are three distinct kinds of data recognized by the processor:
Stack, which holds temporary data, parameters and return addresses.
Code, which is instructions for the processor to execute.

Data, which is used to hold data that is available for longer than the lifetime
of any one function or routine.

The primary distinction between stack and data is that data segments begin at
offset zero and expand upward (to the limit) while stack segments begin at the
highest offset and expand downward (to just greater than the limit). Many
language implementations use data segments for their stack, which is perfectly
acceptable, but it makes it impossible to grow the stack.

The descriptor for a memory reference is found by using the appropriate selector
as the index to a table or, if you ignore the 3 lower bits, as an offset to the table,
since descriptors are 8 bytes long.

1.3.3 Selector Format

6 o0s/2 Debugging

In protect mode, a Selector has three fields:

1. Index, the left 13 bits, bits numbered 15-3
This is an index into a descriptor table

2. Table indicator, one bit, bit number 2
0 means GDT
1 means LDT

3. RPL, the right 2 bits, numbered 1 and 0.
Requested Privilege Level.
Perceived as a two bit value, range 0 to 3

00=most privileged, or ring 0; 11=least privileged, or ring 3.

The position of the bits makes a selector (with its 3 low order bits turned off) the
offset into the table.

T 1
INDEX TI RPL | fields
[A A A A A S

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 bit numbers

1.3.4 Privilege Levels

The point of privilege levels is to prevent a program from accessing a storage
object that is more privileged than the program itself. Generally, this means that
application programs are not able to access storage used by supervisory
programs in any way. This also means it is safe to keep descriptions of storage
used by the system in a descriptor table that can be accessed by applications,
because the application cannot use those descriptors.

There are actually three distinct privilege levels associated with every storage
access, and testing privilege level is a two-step process. The privilege level
used to access a storage operand is the less privileged of CPL and RPL. The
first step is to determine the actual privilege level with which to attempt the
access. The second step is to compare the privilege level of the storage object
(from the descriptor) to the result of the first step.

DPL Descriptor Bits 45 and 46 of descriptor.
Privilege Level.

RPL Requested 2 low order bits of selector.
Privilege Level.

CPL Current Privilege 2 low order bits of CS.
Level.

A more privileged (lower numbered) program may access the storage objects of
a less privileged program. This is how the operating system returns structures
and fills in data areas for an application.

Any attempt by a less privileged (higher numbered) program to access in any

way a storage object which is more privileged generates a general protection
exception.

Chapter 1. Approach to Problem Solving 7

RING 3

RING 2

RING 0

appl 1 | shared | appl 2

Figure 1. Ring Protection Diagram

1.3.5 Descriptor Tables

There are three tables which hold descriptors.

The three tables are:

1. The Global Descriptor Table or GDT, describes memory objects which are
accessible to all processes.

The GDT is located by means of a hardware register called the GDTR which
contains the linear address and length of the GDT.

2. The Local Descriptor Table or LDT, describes memory objects which are
unique to one process or are shared among a few processes by design.

The LDT is located by means of a hardware register called the LDTR which
contains a selector. The descriptor referenced by this selector must be a
system descriptor which describes an LDT.

3. The Interrupt Descriptor Table or IDT, has gates that specify interrupt handler
entry points.

The IDT is located by means of a hardware register called the IDTR which
contains the linear address and length of the IDT. The interrupt number is
used to index into this table when an interrupt occurs.

8 o0s2 Debugging

1.3.5.1 Descriptor Fields
Type Tells what kind of object is described

Application types: Code, Data
System types: LDT, TSS, Call Gate, Irpt Gate

Base Linear address of object

Limit Defines the size of a storage object

DPL Privilege level defines which ring(s) can access the described object
I 1 1 | | 1 1 1 |

LIMIT 00-15 BASE 0-23 TYPE S DPL P LIMIT 16-19 FLAGS BASE 24-31

| | | | | | |

0 1 2 3 4 5 6 7
byte offsets
Display a descriptor with 'DB' to see it in this form.

Notes:

TYPE is what kind of object is described
S is descriptor category; O=system, l=code or data
PL is privilege level of object described
P is the present bit; l=present, 0=not present

1.3.5.2 Descriptor Flags

Bit 55 Granularity: (G) 0=limit is in bytes, 1=limit is in 4K pages

Bit 54 Default address size: 0=16 bit, 1=32 bit

Bit 53 Default operand size: 0=16 bit, 1=32 bit

Bit 52 Unused by hardware, used by OS/2 to indicate UVirt

Bit 47 Present: (P) 1=segment is present, 0=segment is not present

Bits 46 and 45 Privilege Level: 00=most, 11=least
Bit 44 Segment type: 0O=system segment, 1=application segment
Bit 40 Accessed: (A) 0=not accessed, 1=accessed

Note: If application segment, (Bit 44 = 1), used to store program code and
data.

Bit 43=0 is Data Segment

Bit 42: Expansion: 0=Expand Up, 1=Expand Down

Bit 41: Writeable: 0=Read Only, 1=Read/Write

Bit 43=1 is Code Segment

Bit 42: Conforming: 0=Nonconforming, 1=Conforming

Bit 41: Readable: 0=Execute Only, 1=Read/Execute
Note: If system segment, (Bit 44 = 0)

Bits 39-42 Type of segment

00 RESERVED

01 Available 286 TSS (16-bit)
02 LDT

03 Busy 286 TSS (16-bit)

Chapter 1. Approach to Problem Solving 9

04
05
06
07
08
09
10
11
12
13
14
15

286 Call Gate (16-bit) (Parm Count is words)
Task Gate

286 Interrupt Gate (16-bit)

286 Trap Gate (16-bit)

RESERVED

Available 386 TSS (32-bit)

RESERVED

Busy 386 TSS (32-hit)

386 Call Gate (32-bit) (Parm count is doublewords)
RESERVED

386 Interrupt Gate (32-bit)

386 Task Gate (32-bit)

1.3.5.3 Descriptor Table Summary
There are three descriptor tables at any instant:

1. Global Descriptor Table

Located via GDTR
1 per system
Accessible to all processes

Describes objects common to all processes

2. Local Descriptor Table

3.

LDTR is selector
GDT Descriptor Locates LDT
1 per process except VDM

Describes data unique to one process

Interrupt Descriptor Table

Located via IDTR
1 per VDM + 1 per system for protect mode

Describes interrupt routine entry points

1.3.6 The Selector Registers

Each selector register appears to be 16 bits long. The six application selector
registers and a brief description of the use for each follow:

10

0S/2 Debugging

SS:
CsS:
DS:
ES:
FS:

Stack Selector, specifies the descriptor used for stack references.
Code Selector, specifies the descriptor used for instruction references.
Data Selector, specifies the descriptor used for most data references.
Extra Selector, specifies another descriptor used for data references.

This is a selector which can be used for data references if explicitly

specified.

GS:

This is a selector which can be used for data references if explicitly

specified.

The two system selector registers and a brief description of the use for each
follow:

LDTR: The LDT register selects the LDT descriptor from the GDT.

TR: The Task Register selects the descriptor used for the TSS.

1.3.7 When Checking is Done

When a program moves data into a selector register, that data becomes a
selector and the processor fetches the content of the appropriate entry from the
specified table into onboard registers which are not accessible to the
programmer. The processor verifies the validity of the attempted access to the
memory whenever a selector register is updated. This makes the protection
overhead occur as part of the instruction which modifies a selector register, but
eliminates it for further use of the selector.

If the RPL of the SS register is not the same as CPL, or if an attempt is made to
move the null selector into SS, a general protection exception occurs.

etc etc
30 36 (p1=2) Timit
LDTR = 28 — 2F
20 27
18 DS 1F— =
TR = 10 17
offset
08 OF
00 useless base 07 |base
GDTR > — > —
GDT LDT

Note: The first descriptor in the GDT is reserved, by definition, and cannot be
used. Any selector which would reference it is called the NULL selector;
possible values are 0000, 0001, 0002, and 0003.

By definition, the null selector may be placed in DS, ES, FS, or GS, but any
attempt to form an address with it is a general protection fault.

The LDTR is a register that contains a selector. It can be accessed only by
privilege level 0 instructions. It must contain a selector that references the GDT,
and a descriptor whose type is LDT.

It is not unusual for a GDT selector to describe the same storage as an LDT
selector does. In OS2 2.x, application selectors in the GDT happen to describe
one 448 Meg segment, not just a 64K segment like the LDT selectors describe.
The linear address assigned to each LDT descriptor is extremely convenient for
changing one form of an address to another, called thunking, which will be
discussed later.

Chapter 1. Approach to Problem Solving 11

1.3.8 Descriptor Examples

These examples come from

DUMPO1, which is used for several exercises.

DL 7 37

0007 Data Bas=ac6d7000 Lim=0000ffff DPL=3 P RO

000f Code Bas=00010000 Lim=00002e77 DPL=3 P RE A

0017 Data Bas=00020000 Lim=0000290f DPL=3 P RW A

001f Data Bas=00030000 Lim=000018af DPL=3 P RW A

0027 Data Bas=00040000 Lim=0000030a DPL=3 P RW A

002f Data Bas=00050000 Lim=00000fff DPL=3 P RW

0036 Data Bas=00060000 Lim=00000fff DPL=2 P RW A

DL BECF

bece Code Bas=17d90000 Lim=00000010 DPL=2 P RE A

DL BFD7 BFEF

bfd7 Data Bas=17fa0000 Lim=0000ffff DPL=3 P RW A

bfdf Data Bas=17fb0000 Lim=0000ffff DPL=3 P RW A

bfee Code Bas=17fd0000 Lim=00000aa2 DPL=2 P RE A

DG 20 78

0020 Data Bas=ffe5b000 Lim=000003ff DPL=0 P RW uv

0028 LDT Bas=ac6d7000 Lim=0000ffff DPL=0 P

0030 Data Bas=ffe09de4 Lim=0000421b DPL=0 P RW ED A UV

003b Data Bas=ffdcbe2c Lim=00000073 DPL=3 P RW

0040 Data Bas=ffe5a400 Lim=000003bf DPL=0 P RW uv

004a Data Bas=00000000 Lim=1bffffff DPL=2 P RW A G4k BIG UV
0053 Data Bas=00000000 Lim=1bffffff DPL=3 P RW A G4k BIG UV
005a Code Bas=00000000 Lim=1bffffff DPL=2 P RE C A G4k C32 UV
0063 Data Bas=00000000 Lim=1fffffff DPL=3 P RW G4k BIG UV
006b Data Bas=00000000 Lim=1bffffff DPL=3 P RW A G4k BIG UV
0070 Data Bas=ffe22000 Lim=000074e4 DPL=0 P RO A

0078 Data Bas=ffe22000 Lim=000074e4 DPL=0 P RW

DG 148 L 4

0148 Code Bas=fff39000 Lim=00009262 DPL=0 P RE A

0150 Code Bas=fff43000 Lim=0000e137 DPL=0 P RE A

0158 Data Bas=00000000 Lim=ffffffff DPL=0 P RW A G4k BIG
0160 Code Bas=00000000 Lim=ffffffff DPL=0 P RE A G4k C32

The top section of the above output was
DL 7 37

created by entering the command

By inspecting the type, base, and limit fields in the above output, we can see the
following about the descriptor referenced by 002F:

The storage is described as data having a base or linear, address of 00050000.
The linear address is not normally written with leading zeros. If there were any
chance that the address might be mistaken for physical, a percent sign would be
used, for example, %50000. The limit is FFF, which means that the segment is
4K or 1000(hex) long. The privilege level is 3, the segment is present, and the
flags indicate Read/Write storage. It has not been accessed, because the 'A’
flag is not present and OS/2 no longer uses this flag; once set by the hardware,
it remains set.

12 osn2 Debugging

Examples related to privilege level protection follow below:

CS:IP

000F:
000F:
000F:
000F:
000F:
000F:
000F:
000F:
000F:

BECE:
BECE:
BECE:
BECE:
BECE:
BECE:
BECE:
BECE:
BECE:

0150:
0150:
0150:
0150:
0150:
0150:
0150:
0150:
0150:

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

CPL

PPN W wWwwwwwwww

O OO OO OOOOo

DS:

17

37

43
42

17

37

43
42

17

37

43
42

In each case, as you

comes from the descriptor. The column titled 'lesser privilege' is calculated
remembering that higher numbers are lower privilege. The final column is
obtained by following the access rules, a short way back.

XXXX

I XXXX
16:
14:
I XXXX
36:
34:
$XXXX
T XXXX
40:

XXXX
XXXX

XXXX
XXXX

XXXX

L XXXX
16:
14:
I XXXX
36:
34:
$XXXX
T XXXX
40:

XXXX
XXXX

XXXX
XXXX

XXXX

L XXXX
16:
14:
T XXXX
36:
34:
$XXXX
T XXXX
40:

XXXX
XXXX

XXXX
XXXX

XXXX

RPL

OMNWONWON W OMNWONMNWON W

OMNWONWON W

lesser
privilege

CPL and RPL

3

NN W NWN N W Wwwwwwww

OMNWONWON W

DPL
(from

3

QDO OMNMNMNDWWW QOO MMM WW

QO OMNMNMNDWWW

Access
allowed?

descriptor)

Yes
Yes
Yes
No
No
No
No
No
No

Yes
Yes
Yes
No
Yes
Yes
No
No
No

Yes
Yes
Yes
No
Yes
Yes
No
No
Yes

read across you will see that CPL comes from the value of
the CS register, RPL comes from the two low-order bits of the selector, and DPL

Chapter 1. Approach to Problem Solving

13

1.4 Exercise 1: Selectors and Descriptors
Objectives:
1. Learn how to load a dump for analysis.
2. Introduction to the dump formatter.
3. Learn how to display descriptors.
Start the lab at a full-screen or windowed command prompt.

A full-screen session is faster, but a windowed session can be made 100
lines high by entering

MODE C080,100
This can be very useful, because you can look back quite a ways by using
the scroll bar.

Change to directory HANDS-ON\UTILS

Make diskette one by typing 0S2IMAGE ..\IMAGES.162\LAB01.001 A:

Make diskette two by typing 0S2IMAGE ..\IMAGES.162\LAB01.002 A:

Load the dump into a new file which will be named DUMP01.DMP by typing
DCOMP A: X:\DUMPO1.DMP and pressing enter, then following the prompts.
When the dump is loaded, it should have a file size of 4194816.

Start the dump formatter by typing DF_RET X:\DUMPO1.DMP

or by (X is the CD-ROM drive)
X:HANDS-ON8162.DFDF_RET X:HANDS-ON\DUMPS.162\DUMPO1.DMP

You should see 6 or 7 informational lines at the top, followed by a pair of
lines which start "Slot", and "*0023#", followed by a set of registers.
*** \We are not yet concerned with any of these. ***

You should get a prompt, which is the character #

Note: You can always document what you are thinking by simply typing it in
as an evaluation for the dump formatter to perform. You can access the
evaluation function by typing ? followed by whatever you want echoed to the
screen and to the log. You can also type in ? and any expression to have it
evaluated and output in hex, decimal, octal, binary, character and Boolean
forms.

? by itself is a simple request for what commands are recognized.
Use the dump formatter to look at descriptors and answer these questions.
The dump formatter is not case sensitive.

Descriptors may be displayed using DG or DL followed by the selector. Try it
both ways for several selectors, such as F, 160, DFFF, 158.

Use the miniature command reference in the appendix, if necessary.

There are a great many things we will not do in this exercise. We are using
only a tiny part of the dump formatter's capabilities for this class. For
example, we will ignore the IDT in this class; one can enter DI followed by
the interrupt number to see the descriptor from the IDT.

Questions to answer:

1. Which table contains the descriptor data for selector O00F?

14 osn2 Debugging

10.

11.

12.

13.

14.

15.

Which command is preferred to display only the descriptor for 000F?

What alternative command will also display only the descriptor for 000F?

. What type of memory is described by selector 000F?

Hint: It is one of the first things displayed in the output for each descriptor.

What is the largest valid offset within segment 000F?

. What is the size of segment 000F?

Hint: Not quite the same as the previous answer.

What is the linear (virtual) address of segment 000F?

. What privilege level is segment 000F?

. What is the Requested Privilege Level of selector 000F?

Hint: RPL is not in the descriptor.

What is the type and limit of segment 00177

What is the linear (virtual) address of segment 0017?

Which table contains descriptor 00177
Will the aplication program be able to access the segment selected by 000F?

Explain.

Will the program be able to store into segment 000F?

Explain.

Will the application program be able to access storage using selector 00377

Explain.

Chapter 1. Approach to Problem Solving 15

16. Will the program be able to write into storage using selector 0038?

Explain.

17. Will the program be able to write into storage using selector 00077?

Explain.

18. Enter the following command: DG 70 L 2

Compare and contrast the base, limit, privilege level and flags for each.

19. Enter the following command: DG 5A;DG 5B

Compare and contrast the base, limit, privilege level and flags for each.

20. Enter the following command: DG 28;DL 7

Compare and contrast the base, limit, privilege level and flags for each.

The dump formatter will exit in response to the command Q

1.5 Address Mapping

This section describes the method used to transform addresses from linear
addresses to physical addresses.

1.5.1 Paging Overview

16

0S/2 Debugging

OS/2 V2 uses paging in addition to the above logical addressing. Paging is a
mechanism which converts linear addresses to physical addresses and allows a
consistent size (4K) to be moved back and forth to auxiliary storage
(SWAPPER.DAT) when the demand for virtual memory exceeds the physical
memory installed on the machine. Another hardware register, Control Register 3
or CR3, is used to locate a page directory which contains table entries that
locate page tables. The page tables are used to locate the physical memory
where the data really resides. Physical memory is sometimes referred to by
page number. A page number is simply the twenty high-order bits of an
address. The twelve low-order bits of a page address are all zero. One can
convert a page number to an address by simply appending three hex zeros to it.

The result of combining a segment number and an offset, or the addition of an
offset to the base address from a descriptor, is a linear address. Under OS/2
1.x, these would be physical addresses. Under OS/2 2.0 and following, these are
linear or virtual addresses.

The picture below shows how linear addresses are converted to physical
addresses. Only the top line in the picture below is a linear address - the rest
are physical.

The ten high order bits of the linear address are used to index into the Page
Directory which has the twenty high order bits of the page table's physical
address (page number). The next ten bits of the linear address are used to
index into the page table. The twenty high order bits of the page frame's
physical address (page number) are retrieved. The twelve low order bits of the
linear address are also the twelve low order bits of the physical address.
Therefore, the physical address is the twenty bits from the page table entry,
followed by the 12 low-order bits from the linear address.

LINEAR ADDRESS

bits 31-22 bits 21-12 bits 11-00

page page page
directory table frame

> 1
] data

—> B |
| |<

| |

| |

,_> |_> —>

CR3
CR3 and the table entries all have physical addresses!

1.5.2 Page Table Entries

The page directory entries are identical to the page table entries.

Each entry is 4 bytes, making 1K entries in each page table.
Bits 31-12 Physical address of page or page frame address
Bits 11-09 Ignored by hardware, used by OS2. See Note.

Bits 08-07 Reserved, must be zero

Bit 6 Dirty (D) O=not changed (clean), 1=changed (dirty)

Bit 5 Accessed (A) 0=not accessed, 1=accessed

Bit 4 Page Cache Disable O=allow cache use, 1=bypass cache

Bit 3 Page Write-Through O=cache write-into, 1=write through to RAM
Bit 2 Supervisor (S/U) 0=Supervisor (PL=0,1,2), 1=user (PL=3)

Bit 1 Write enable (RO/RW) 0=Read Only, 1=Read/Write

Bit 0 Present (P) O=not present, 1=present

Note: The left 5 hex digits of the entry are the left 5 hex digits of the physical
page; while the right 3 hex digits are mostly flags.

Chapter 1. Approach to Problem Solving 17

If Bit O is zero, (page invalid) the remaining bits are not inspected by the

hardware.
address.

0S/2 uses them to identify the virtual page associated with this

Bits 09 and 10 are used to track the state of the page frame.

Three of the possible four combinations are used:

0 - Pageable
1 - UVirt
2 - Resident

1.5.3 Page Table Contents

To look at the contents of the page directory and page table(s), use the
command DP, followed by the address of interest.

18

0S/2 Debugging

DP F:0

linaddr frame
%00010000* 001e0
%00010000 0009e
%00011000
%00012000 00292
DP 17:0

linaddr frame
%00020000* 001e0
%00020000 00181
%00021000 003d4
%00022000 0005a
DP 1F:0

linaddr frame
%00030000* 001e0
%00030000 003ae
%00031000 001b5
DP 27:0

linaddr frame
%00040000* 001e0
%00040000 00052
DP 2F:0

linaddr frame
%00050000* 001e0
%00050000 00075
DP 37:0

linaddr frame
%00060000* 001e0
%00060000 002ae

In each case, the

pteframe state
frame=0009e 0
frame=0009e 0
vp id=012ae 0
frame=00292 0

pteframe state
frame=00181 0
frame=00181 0
frame=003d4 0
frame=0005a 0

pteframe state
frame=003ae 0
frame=003ae 0
frame=001b5 0

pteframe state
frame=00052 0
frame=00052 0

pteframe state
frame=00075 0
frame=00075 0

pteframe state
frame=002ae 0
frame=002ae 0

w

OO OO

(7]

oo OO

(%]

oo oM

res

o

res

o

res
0
0

O o oo

(e}

e B e B v i w S e

O oo oo
(o)

Dc
D
D

A
A

CD WT

CD WT

CD WT

CD WT

CD WT

CD WT

first line of output is the data from

The field labelled 'frame’ is the physical page frame
referenced address.

Us
]

n state
pageable
pageable
pageable
pageable

cccac
S5 s s
W S U U DO

n state
pageable
pageable
pageable
pageable

=E===3
W U U U U

n state
pageable
pageable
pageable

===
U U U U

state
pageable
pageable

state
pageable
pageable

state

pageable
pageable
the page directory.

which holds the data at the

The 'vp id' is the virtual page identifier for the entry %11000.

'Dc’ is Dirty or Clean. 'Au’ is Accessed or unaccessed.
'Us' is User (Ring 3) or supervisor (Rings 0 and 2).

'rW' indicates read-only or Writeable. 'Pn’ indicates Present or not present.

1.6 Data Format in Storage

Data format is least significant byte at lowest address!

This arrangement is not intuitive for many people, because when you read bytes,
the data placement seems reversed. The tools will let you display storage as
bytes, words, and doublewords; the data will be re-arranged to suit the format
requested. This can be good or bad.

For example:

Chapter 1. Approach to Problem Solving 19

DB 1F:1608 L 20
001f:00001608 42 4f 4f 4b 53 48 45 4c-46 3d 43 3a 5¢c 4f 53 32 BOOKSHELF=C:\0S2
001f:00001618 5¢c 42 4f 4f 4b 3b 00 43-4f 4d 53 50 45 43 3d 43 \BOOK;.COMSPEC=C

DA 1F:1608
001f:00001608 BOOKSHELF=C:\0S2\BOOK;

DB 17:0 L40
0017:00000000 02 00 03 00 05 00 07 00-0b 00 Od 00 11 00 13 00 ...evvvuunnnnnn.
0017:00000010 17 00 1d 00 1f 00 25 00-29 00 2b 00 2f 00 35 00%.).+
0017:00000020 3b 00 3d 00 43 00 47 00-49 00 4f 00 53 00 59 00 ;.=.C.G.I.O.
0017:00000030 61 00 65 00 67 00 6b 00-6d 00 71 00 7f 00 83 00 a.e.g.k.m.q

DW 17:0 L20

0017:00000000 0002 0003 0005 0007 000b 000d 0011 0013
0017:00000010 0017 001d 001f 0025 0029 002b 002f 0035
0017:00000020 003b 003d 0043 0047 0049 004f 0053 0059
0017:00000030 0061 0065 0067 006b 006d 0071 007f 0083

DW 17:1 L 20

0017:00000001 0300 0500 0700 Ob0OO 0d00 1100 1300 1700
0017:00000011 1d00 1f00 2500 2900 2b00 2f00 3500 3b00
0017:00000021 3d00 4300 4700 4900 4f00 5300 5900 6100
0017:00000031 6500 6700 6b00 6d00 7100 7f00 8300 8900

DD 17:0 L 10

0017:00000000 00030002 00070005 000d000b 00130011
0017:00000010 001d0017 0025001f 002b0029 0035002f
0017:00000020 003d003b 00470043 004f0049 00590053
0017:00000030 00650061 006b0067 0071006d 0083007f

DD 17:1 L 10

0017:00000001 05000300 0b000700 11000d00 17001300
0017:00000011 1f001d00 29002500 2f002b00 3b003500
0017:00000021 43003d00 49004700 53004f00 61005900
0017:00000031 67006500 6d006b00 71007100 89008300

DD 17:2 L10

0017:00000002 00050003 000b0007 0011000d 00170013
0017:00000012 001f001d 00290025 002f002b 003b0035
0017:00000022 0043003d 00490047 0053004f 00610059
0017:00000032 00670065 006d006b 00710071 00890083

You need to know what you are looking at!

1.7 Exercise 2: Paging, Addresses, Data
Objectives:
1. Reinforce the knowledge from exercise 1.
2. Learn how to display page table data.
3. Learn how to convert a logical address to a linear address
4. Learn how to convert a linear address to a physical address.
5

. Learn how to display storage as ASCII, bytes, words and doublewords.

20 os2 Debugging

Startup directions:

1. Start the dump formatter by typing (X is the CD-ROM drive)
X:HANDS-ON8162.DFDF_RET X:HANDS-ON\DUMPS.162\DUMPO1.DMP

2. You should see the standard startup messages.

3. The initial register display is what the application registers were at the time
the application (ring 3) program trapped.

4. You can see these at any time by entering the .R command.

5. Use the dump formatter to look at the dump and answer these questions.
The dump formatter is NOT case sensitive.

Note: Paging data may be displayed using the DP command, followed by the
address.

The dump process destroys the first entry of the page directory. You will get
quite confused if you try to follow the hardware method to look at paging
information for addresses 0 - 3FFFFF.

If you must, use the .N command to find "savepage”, which will tell you the
physical address of the page table for that address range.

This may well be the last time you use a physical address in an OS/2 debugging
session. With the notable exceptions of physical memory management and
physical device drivers, OS/2 is almost completely unaware of physical
addresses. The 32-bit virtual address, also called a linear address, and a flat
address, is what is used in general throughout OS/2.

Assuming these registers, answer the following questions:

eax=0000c8cf ebx=00002910 ecx=000000df edx=00000000 esi=00000030 edi=00000060
eip=000000be esp=000014be ebp=000014e6 iop1=2 rf -- -- nv up ei pl zr na pe nc
¢s=000f ss=001f ds=001f es=0017 fs=150b gs=0000 cr2=00000000 cr3=001a7000

1. What are the base and limit fields for selector 000F?
(the base is the linear address)

2. How many 4K pages are in this segment? Hint: Look closely at the limit
field.

3. How many physical pages are allocated for the virtual memory segment
starting at F:0?

Hint: DP OF:0 or DP %10000

4. Why are the above two answers different?

5. What is the physical address of the data at F:0?
Observation: You now have three ways to address the data.
a. Real or V86 (&selector:offset)
b. Logical (#selector:offset)
c. Linear (Y%address)
d. Physical (%%address)

We will now display the same storage many ways, to confirm we know how.

Chapter 1. Approach to Problem Solving 21

22

0S/2 Debugging

6.

10.

11.

12.

13.

What is the command to display the storage at SS:BP in words using a
logical address?

What is the command to display the storage at SS:BP in words using a linear
address?

What is the command to display the storage at SS:BP in words using a
physical address?

For each of the following, study the results until you understand.

Display the data at 7:0 as bytes, and words.

Display the data at 7:1 as bytes and words.

Display the data at 7:0 and 7:1 as words.

Display the data at 7:0 as words and doublewords.

Display the data at 1F:15C6 as bytes and ASCII. Also look at 1F:15DA as
bytes and ASCII.

1.8 Instruction Set

This section discusses the Intel 86 registers and some common instructions from
the instruction set.

1.8.1 Register Review

1.8.2 Execution

Registers discussed so far:

CR3 32-bit physical address of the Page Directory
IDTR 32-bit linear address of IDT, 16-bit size of IDT
GDTR 32-bit linear address of GDT, 16-bit size of GDT

LDTR 16-bit selector for an entry (type 2) in the GDT

SS 16-bit selector, used for stack operations

Cs 16-bit selector, used to locate instructions

DS 16-bit selector, used to locate data, generally the default
ES 16-bit selector, used to locate data, string destination
FS 16-bit selector, used to locate data explicitly

GS 16-bit selector, used to locate data explicitly

The 386 execution consists of the classic pattern of fetching an instruction from
memory and executing it, then repeating the process. The instructions are
always found in a code segment accessed via the descriptor designated by the
selector in the CS register. The current privilege level of the program is
contained by the two low order bits in the CS register. The offset of the next
instruction is contained in the instruction pointer, (IP or EIP) which is
incremented as each instruction is fetched. The 386 and following generations
recognize a great number of instructions, but compilers generate a very small
subset of the whole instruction set. Much of that subset will be discussed here.
If you cannot ascertain what an instruction does when you encounter it, look it
up in the appropriate reference manual. Instructions are generally executed
sequentially, and the processor attempts to fetch instructions well in advance, to
increase execution speed. The flow of control departs from sequential when a
jump, call, return, interrupt or interrupt return is encountered. Jumps are
conditional or unconditional. Conditional jumps are used to implement decisions
and contain a relative offset which is combined with IP by signed addition to
cause a different instruction in the same segment to be executed next. Calls,
returns and unconditional jumps come in two varieties: NEAR and FAR. The
NEAR variety update only IP and leave CS untouched. The FAR variety update
both CS and IP and are potentially quite complex. CALL, RETurn and interrupts
require a stack. Most instructions reference the registers.

Chapter 1. Approach to Problem Solving 23

1.8.3 General Registers

1.8.4 Machine

24

0S/2 Debugging

EAX ALL 32 BITS
(part of EAX) AX LOW 16 BITS
(part of AX) AH HIGH 8 BITS
(part of AX) AL LOW 8 BITS

Registers EBX, ECX and EDX also subset in the same way.
There are two byte-sized pieces, which can be collectively
referenced as a word-sized item.

EIP ALL 32 BITS

(part of EIP) IP LOW 16 BITS

IP and EIP are always offsets into CS.
They always contain the address of the next instruction to execute.

ESP ALL 32 BITS

(part of ESP) SP LOW 16 BITS

SP and ESP are always offsets into SS.
They contain the address of the last item pushed into the stack.

REGISTERS EBP, ESI and EDI also subset in this way.
They have no 8 bit parts.

Instructions
There are several fields which may be present in an instruction. Additionally,
there are a few easy-to-learn generalities which will make understanding what
an instruction does much easier. Data definitions will not be covered here.

There are many fields possibly present in an instruction.

. The label.

The label is optional, but must be first. It is followed by a colon. It is used
so the programmer can refer to the instruction symbolically. A label does
not require an instruction.

Labels which are Public become symbols at link time.

2. The mnemonic operation code, or opcode, is next.

It defines what operation will be attempted, and therefore what operands
need to be specified. Instructions have zero to three specified operands;
many instructions also imply operands.

3. The operands are next, separated by commas.
The first operand is always the result, or target, of the operation.

An operand may be a value, a register, or storage. When the operand is a
value, it is called immediate, because the operand is immediately available if
the instruction has been fetched. When a register is named, it is the
operand. If an expression is contained in brackets, it is evaluated and the
result is used as a offset into some segment.

A storage operand is in some segment by default. Data references default to
the data segment or DS, unless (E)BP or (E)SP are present in the address
expression. In this case, the default segment is the stack segment (SS).
(BE)IP is always in the CODE segment (instructions). (E)SP is always in the
STACK segment (data). (E)BP is usually in the STACK segment (data).

The default segment can usually be overridden by specifying the selector as
part of the address, for example, DS:[BP+8].

You will come across helper words within operands, such as byte, word and
dword which are there to remind you of the size of the data item referenced.
You will also come across the helper word "ptr”, which is to remind you that
the addressed data is in storage, and that the offset, in brackets, is a pointer
to the data.

4. The last item you may find is an optional comment.

A comment is preceded by a semicolon. Anything following is a comment.
Comments are sparse in the output of the Unassemble command.

The debug kernel will use a comment to identify a breakpoint.

Both the debug kernel and the dump formatter will supply a symbol anytime
a number matches the symbol in an active file.

1.8.5 Typical Instructions
MOV CL,DH
The opcode is MOV, the first operand is the CL register, and the

second operand is the DH register. This instruction will copy (MOVe)
all 8 bits from the DH register to the CL register.

MOV DX,8

The opcode is MOV, the first operand is the DX register, the second
operand is the immediate value of 8. This instruction puts the value 8
into the DX register.

MOV EBP,ESP
Again, the opcode is MOV, and the instruction will copy all 32 bits of
ESP into EBP.

MOV AX,BX

You should be able to tell by now that this instruction will copy 16 bits
from BX to AX. Note that instructions which reference only registers
are extremely unlikely to cause an exception.

Chapter 1. Approach to Problem Solving 25

26

0S/2 Debugging

MOV AX,word ptr [BX]

This instruction is different from the one above because there are
brackets around the second operand. This means that the operand,
BX in this case, is in storage, and the BX register holds the offset into
the DS segment. If BX is outside the limit of the DS segment, a
general protection fault will occur.

MOV word ptr [BX],AX

This instruction is similar to the preceding one, but moves data into
storage, rather than from storage. The same exceptions might occur,
and if the DS segment is read-only, this instruction would also fail.

MOV word ptr ES:[BX],DI

This is an example of overriding the default segment, DS, by explicitly
specifying that the offset in the BX register applies to the ES segment.

ADD word ptr DS:[BP],AX

This would add the 16 bits from AX into storage at DS:BP, developing
the sum directly in storage. The override is needed because the use
of BP means that the default segment is SS.

DEC word ptr [BP-2]

Some instructions have only one operand. In this case it is in storage
at an offset calculated by subtracting 2 from the BP value, in the
segment defined by the SS register, because BP is used.

Also SUB, CMP, AND, OR, XOR, XCHG, INC, SHL, etc.

It is extremely common for 16-bit code to use FAR addresses. When they are in
storage, it would require several instructions to get a FAR address into the
registers, if it were not for several instructions whose purpose is specifically to
fetch a FAR address from storage into a selector and another register. These
instructions may be recognized by the opcode, which is the letter L followed by a
selector register name other than CS. The apparent first operand is the general,
base, or index register which will hold the offset part of the far address. Both
registers will be loaded, with the first operand coming from the address
specified, and the selector coming from the following word.

LES BX,dword ptr [BP+6]

This instruction loads both BX and ES. BX comes from BP+6 and ES comes
from BP+8, both in the stack segment.

LDS Sl,dword ptr [BP-12]

This instruction loads both SI and DS, Sl is loaded from BP-12 and DS is loaded
from BP-10.

LEA EDI,[EBP+ECX*4-12]

Load Effective Address DOES NOT actually reference storage.
Instead, once the offset has been calculated, it is put into the target
register, EDI in this case. Address expressions like this are possible,
but not often seen while actually debugging. The scale factor can be
1, 2, 4, or 8; not any arbitrary value.

1.8.6 The System Flags

The flags not only control system operation, but also hold the result of

instructions such as CMP (compare). At times, you will find the flags have been
copied to a register, or to memory. The following figure gives the format of the
flags in such cases

Bit
18
17
16
14
13/12
11
10
09
08
07
06
04
02
00

Hex
00040000
00020000
00010000
00004000

3000

0800

0400

0200

0100

0080

0040

0010

0004

0001

Flag name Comments

AC
VM
RF
NT

10PL
OF
DF
IF
TF
SF
zF
AF
PF
CF

ATignment Check, if the alignment mask is 1 (CRO).

V86 mode. Turned on for Virtual DOS Machines.

Resume Flag. Suppress debug exceptions for 1 instruction.
Nested Task. Involved with hardware task switching.

The least privileged code which has unrestricted I/0 access.
Overflow. An arithmetic result does not fit.

Direction of string instructions. O=up, l=down.

Interrupt flag. l=enabled, O=disabled.

Trap flag. Generate a debug exception after each instruction.
Sign. 1=minus, O=plus.

Zero or Equal. l=zero result, 0=non-zero result.

AuxiTiary flag. Used in BCD arithmetic.

Parity flag. O=even, 1l=odd.

Carry flag. 0=no carry, l=carry.

Chapter 1. Approach to Problem Solving 27

1.8.7 Unassembled Instructions

28

0S/2 Debugging

U CS:IP-22 IP-18
000f:0000009¢ f1
000:0000009d 8946fc
000f:000000a0 f7el
000f:000000a2 894614
000f:000000a5 39466

U CS:IP-23 IP-18
000f:0000009b f7f1
000f:0000009d 8946fc
000f:000000a0 f7el
000f:000000a2 8946f4
000f:000000a5 394616

U CS:IP-24 IP-18
000f:0000009a ee
000f:0000009b f7f1
000f:0000009d 8946fc
000f:000000a0 f7el
000f:000000a2 894614
000:000000a5 394616

U CS:IP-25 IP-18
000f:00000099 56
000:0000009a ee
000f:0000009b f7f1
000:0000009d 8946fc
000f:000000a0 f7el
000f:000000a2 894614
000f:000000a5 39466

U CS:IP-26 IP-18
000:00000098 8b56ee
000f:0000009b f7f1
000:0000009d 8946fc
000f:000000a0 f7el
000f:000000a2 894614
000f:000000a5 39466

U CS:IP-27 IP-18
000f:00000097 ec
000f:00000098 8b56ee
000f:0000009b f7f1
000f:0000009d 8946fc
000:000000a0 f7el
000f:000000a2 8946f4
000:000000a5 394616

U CS:IP-10 IP
000f:000000ae 39760
000f:000000b1 77df
000f:000000b3 39760
000f:000000b6 7510
000f:000000b8 c45ede
000f:000000bb 8b46f6
000f:000000be 268907

db

mov
mul
mov
cmp

div
mov
mul
mov
cmp

out
div
mov
mul
mov
cmp

push
out
div
mov
mul
mov
cmp

mov
div
mov
mul
mov
cmp

in

mov
div
mov
mul
mov
cmp

cmp
ja

cmp
jnz
les
mov
mov

fl
word ptr [bp-04],ax
X
word ptr [bp-0c],ax
word ptr [bp-0a],ax

X
word ptr [bp-04],ax
X

word ptr [bp-0c],ax
word ptr [bp-0a],ax

dx,al

cx

word ptr [bp-04],ax
cX

word ptr [bp-0c],ax
word ptr [bp-0a],ax

Si

dx,al

X

word ptr [bp-04],ax
X

word ptr [bp-0c],ax
word ptr [bp-0a],ax

dx,word ptr [bp-12]
X
word ptr [bp-04],ax
X
word ptr [bp-0c],ax
word ptr [bp-0a],ax

al,dx

dx,word ptr [bp-12]
cx

word ptr [bp-04],ax
cX

word ptr [bp-0c],ax
word ptr [bp-0a],ax

word ptr [bp-10],si
0092

word ptr [bp-10],si
00c8

bx,dword ptr [bp-22]
ax,word ptr [bp-0a]
word ptr es:[bx],ax

1.8.8 Observations About Unassembling from an Unknown Starting Place
Instructions are of variable length, from one to fifteen bytes long.

This means the address you provided may not actually be the start of an
instruction. This also means, therefore, that the first few instructions you see
may not actually be what the machine saw.

If you look at the output of several unassemblies starting at sequential
addresses, you will see that after typically three to five tries, the unassembly will
agree with previous ones, for some point after the unassembly started.

This is typically within four or five lines, but not always. Be cautious, and see if
the sequence looks reasonable. If it does, you have most likely found an

instruction boundary. Experience will help this process.

Some common sense will help as well. Obviously, an application in ring 3
cannot perform I/O directly. Likewise, the db means that the unassembler did
not have a way to interpret this as an instruction.

The last command entered looks at a few of the instructions which actually
preceded a failure.

Can you discover which instruction put the data into the ES and BX registers?

Chapter 1. Approach to Problem Solving 29

1.9 Exercise 3. Unassembling and Reading Instructions

30

0S/2 Debugging

Objectives:

1. Reinforce the preceding lab exercises

2. Learn how to unassemble instructions

3. Learn how to read instructions

4. Learn about variable length instructions

We will now look at instructions.

1. In what type of segment are instructions found?

2. Are instructions ever executed in any other segment type?

3. Unassemble the instructions which would have been next to execute (if the
application hadn't trapped) by entering U. The default address is CS:IP
initially. You can unassemble further with repeated use of U. To unassemble
at a particular place, specify the address; for example CS:IP.

4. What was the next instruction which would have executed?

5. Unassemble using an address range to see some previous instructions.
Type U CS:IP-20 IP-10. This will unassemble from ip-20 to ip-10. Now type U
CS:IP-21 IP-10 and U CS:IP-22 IP-10. Observe what is happening by closely
observing the address at which each instruction begins.

6. Now type U CS:IP-18 IP to see the two instructions immediately before the
failing instruction
(at CS:IP!). What are they?

7. Which one loaded the address used in the next (failing) instruction?

8. Did the address come from this routine's private data, or was it a parameter
passed by the caller?

This is presented in detail later.
9. Circumstantially at least, what seems to be wrong?

Also presented later.

of pages will face each other.

1.10 Exceptions

Events sometimes occur which disrupt the normal sequence of instruction.
These are called exceptions and interrupts. Intel defines exceptions in relation
to an unsuccessful attempt to execute an instruction. Interrupts are defined as a
hardware response to a event unrelated to program execution.

Trap Hex Type B/C Error Source Cause
Code
Hex CODE CAUSE
0 Fault C No Divide Overflow (perhaps by zero)
1 DR6 B No Debug Exception
2 Int B No NMI (Non-Maskable Interrupt), normally hardware
fault
3 Trap B No Breakpoint (INT 3 instruction)
4 Trap B No Overflow (INTO instruction)
5 Fault B No Bounds Check (BOUND instruction)
6 Fault B No Invalid Opcode
7 Fault B No Co-processor not available, see note
8 Abort Abort Always Double Fault, any instruction
Zero
9 Fault C Yes Co-processor Segment Overrun (286,386 only) (Fault D
in 486+)
A Fault C Yes Invalid TSS
B Fault C Yes Segment Not Present (swapped out)
C Fault C Yes Stack Exception
D Fault C Yes General Protection
E Fault PF Yes Page Fault (paged out)
F (reserved)
10 Fault B No Co-processor Error
11 Fault ? Always Alignment Check
Zero
12 Abort ?? Machine
Check
13-1F (reserved)
20-FF Trap N/A No Available for Hardware Interrupts Via 'INTR' Pin
00-FF Trap N/A No The INT instruction is actually a trap.
Note:

Co-processor not available may be due to not having one, or because the content of the co-processor belongs to
another thread. The co-processor data needs to be saved and restored only when more than one thread is using

it.

Bit 3 in CRO indicates that a thread switch has occurred and will cause a trap 7 when a co-processor instruction is

decoded.

Explanation of B/C column

B - Benign, means it is ok with any other exception.

C - Contributary, means it will contribute to a double fault.

PF - Page Fault, means a referenced address is not present.

1.10.1 Definition of Fault, Trap, Aborts and Interrupts

1. Faults

CS and EIP point to the instruction which generated the fault.

2. Traps

CS and EIP point to the instruction to be executed after the instruction which
caused the trap.

Chapter 1. Approach to Problem Solving 31

INT3, INTO, BOUND, and INT nn are examples of traps.
3. Aborts

In general, these exceptions do not permit locating the failing instruction, nor
restart of the thread which caused the abort. Aborts are used to report
inconsistent or illegal values in system tables, and hardware errors.

4. Interrupts

Unlike the preceding exceptions, interrupts are not related to the program
being executed, but to an external condition.

1.10.2 Hardware Error Codes

Selector Related Error Code

Bits 31-15: Reserved.
Bits 15-03: The index part of the selector involved.
Bit 02: The table indicator bit,
if neither bit 01 nor bit 00 are 1.
Bit 01: IDT selector bit,
if on, the selector is in the IDT.
Bit 00: External bit,
if on, not caused by the program

Page Fault Error Code

Bits 31-04: Reserved.
Bit 03: RSV. A 1 bit was detected in a reserved
bit of a page directory or page table entry.
Bit 02: U/S.
0: The program was in supervisor mode.
1: The program was in user mode.
Bit 01: W/R.
0: The access was a read.
1: The access was a write.
Bit 00: Level.
0: The fault is because of a not-present page.
1: The fault is because of page-level protection.

32 osr2 Debugging

1.10.3 Simultaneous Exceptions

It is possible for more than one exception to occur while attempting to execute
an instruction.

In order to determine what will happen if two simultaneous

exceptions occur on the same instruction, use the following table:

First Exception

Second Exception

Resulting Action

Benign Benign OK
Benign Contributory OK
Benign Page Fault OK
Contributory Benign OK

Contributory

Contributory

Double Fault

Contributory Page Fault OK

Page Fault Benign OK

Page Fault Contributory Double Fault
Page Fault Page Fault Double Fault
Note:

OK means the faults are processed consecutively.

Double Fault means the faults are reported together.

If any other exception occurs trying to enter the DoubleFault handler, the processor shuts down until RESET;
although, if the NMI handler has not been entered, NMI will be recognized and accepted.

A trap C in Ring 0 is usually a double fault.

When the processor detects a Stack Exception it needs to push an error code and a return address onto the
If this happens in Ring 0, there will be no privilege level transition, which
If the exception is due to stack growth, there is no place to push

stack of the exception handler.
includes switching to a new, protected stack.
the error code or return address.

RESULT: TRAP 8

Chapter 1. Approach to Problem Solving 33

34 os2 Debugging

Chapter 2. The Address Space Picture

This is a picture of what the address space looks like for several processes.

FFFFFFFF
KERNEL
0S2 SYSTEM CONTROL BLOCKS
SYSTEM REGION
20000000
1FFFFFFF
SHARED REGION
13000000
EXPANSION REGION
(SHARED and PRIVATE)
04000000
03FFFFFF | | | |
Pid 1 | | | Pid 18 |
PRIVATE | Pid2 | | |
REGION | | | | Pid 12
| | Pid3 | |
I I | |
00010000
INVALID ADDRESS RANGE
00000000

Within the private region you must know the Process ID, as well as the linear
address to define a piece of virtual storage. All regions except the private
region are shared among all processes. Above the private region in the shared
regions, there is only one version of a given address, so you do not need the
Process ID.

The boundary at 03FFFFFF is an initial value. If some application allocates over
03FFFFFF of private space, this boundary will move upward. It moves in steps of
00400000, because another page table is allocated.

DLL's are initially loaded beginning at the 1BFFFFFF boundary, and to
successively lower addresses. This water mark moves downward in steps of
00400000, too.

Addresses not assigned to a memory object are invalid. Any attempt to use
them will generate an exception.

The address space picture discussed here is a simplified overview. A more
detailed description may be found in the Advanced Guide to Hang Analysis
chapter, under Memory Management and Ownership Topics.

[J Copyright IBM Corp. 1996 35

36 o0s2 Debugging

Chapter 3. OS/2 Implementation Details

This section discusses some of the implementation details of OS/2 which
particularly involve debugging.

3.1 Shared Memory
This highlights how memory is shared among a few processes.
The same selector is allocated in each process that shares the storage. Each

process therefore uses the same offset in the LDT, and the LDT entries are the
same, so the same linear address is also used.

Note: The page table entries used for the shared storage are the same for both
processes, too.

LDT 1 LDT 2

SHARED
DATA

DLLs are a good example of shared storage.

DLLs are loaded into the shared address range. The boundary is dynamic, and
moves downward as DLLs are loaded.

The boundary of private addresses move upward as private storage is allocated.
There is a guarantee of 64 Meg for private, and 64 Meg for shared.

3.2 Address Tiling

Address tiling refers to the practice of creating a mathematical or algorithmic
relationship between an LDT selector and the base, or virtual address in the
descriptor.

By using address tiling, OS/2 avoids the need to move memory blocks because

of reallocation, and also makes it very fast to convert an LDT Selector:Offset to a
flat, or Linear Address. The implementation is simply to allocate 64K of virtual

[J Copyright IBM Corp. 1996 37

address space to each selector, starting with selector 000F, at virtual address
64K or %10000.

Note: Selector 0007 is used to map the LDT as read-only data.

3.3 Why Thunk?

It is still common to have applications which have some 32-bit parts, and some
16-bit parts. The 32-bit parts try to avoid using 16-bit selector:offset addressing,
because of the overhead of loading the selector registers, as well as to avoid the
challenge of correctly dealing with storage references in both modes.

A typical example is a 32-bit application calling a 16-bit DLL.

Since storage is (must be) the same for all parts of a process, there has to be a
way to convert one form of an address to the other.

Only 16-bit application selectors from the LDT are eligible for this quick form of
the conversion, and only linear addresses less than %20000000 can be
converted to 16:16 format.

Additionally, addresses in the packed region may not be converted by this quick
method, but by a search of the LDT descriptor base (linear) addresses, followed
by a calculation.

The top of normal application space, at %1BFFFFFF, is mapped to selector DFFF.
The top of protected shared addresses at %1FFFFFFF maps to selector FFFF, if
used.

3.4 Address Transformations (Thunks)

This section tells you how to change from 16:16 to 0:32-bit mode, or vice versa.
There are two parts to thunking, the address transformation, and properly
aligning the stack, if necessary. The stack alignment is usually done by a
subroutine which detects the need to do this, and builds an extra frame in the
new mode, properly aligned by making a copy of the incoming parms,
transforming the addresses as part of this process.

This works only because the specific implementation within OS/2 which was
designed to use address tiling for LDT selectors.

3.4.1 16:16 to 0:32 Thunk

38

0S/2 Debugging

The selectors which are eligible for this thunk are LDT selectors which are
PL=3.

In this case, all three low-order bits are 1. Because of this, one can shift the
selector 3 bits to the right, or divide by 8, without loss of information. The
resulting number is the high-order word of the 32-bit address because of address
tiling. For example, address 000F:00BA can be thunked from 16:16 to 0:32 as
follows:

0 0 0 F : 0 0 B A <--- Hex Sel:0ffset

0000 0000 0000 1111 0000 0000 1011 1010 <--- Binary

shift the selector 3 bits to the right, which gives

0000 0000 0000 0001 0000 0000 1011 1010 <--- Binary

0 0 0 1 0 0 B A <--- Linear Address

Note that the Tower 16 bits, or offset, are unchanged.

A stack may require alignment, because a 32-bit stack is built on doubleword
boundaries, with two low order zero bits in the address of each element,
whereas a 16-bit stack is aligned only on a word boundary.

3.4.2 0:32 to 16:16 Thunk

Because the range of LDT selectors is only 512 Meg, addresses less than this
can be transformed to use an LDT selector, with restrictions. The transformation
is to append three low-order 1 bits to the value, and to discard three high order
zero bits. An alternative way of stating this is to multiply by 8, then add 7. The
three low order one bits are LDT (table indicator=1) and PL=3. The restrictions
are that the storage must be PL=3 application storage, must not span a 64K
boundary in the linear address space, and the value must be less than hex 2000

0000.

0 0 0 2 1 4 B 0 <--- Linear Address
0000 0000 0000 0010 0001 0100 1011 0000 <--- Binary

shift the left half 3 bits to the left, which gives

0000 0000 0001 0000 0001 0100 1011 0000 <--- Binary

add 7 to the Teft half (0111 binary)

0000 0000 0001 0111 0001 0100 1011 0000 <--- Binary

0 0 1 7 : 1 4 B 0 <--- Hex Sel:0ffset

Note that the lower 16 bits, or offset, are unchanged.

Chapter 3. OS/2 Implementation Details 39

3.4.3 Simultaneous 16-Bit and 32-Bit Descriptions of Virtual Storage

40

0S/2 Debugging

GDT RAM LDT
53=es-> 50 A0000 < 50
48 90000 < 48
40 80000 < 40
38 70000 < 38|<- ds=3F
30 60000 < 30|<- ss=37
Tdtr -> 28— 50000 < 28
20 40000 < 20
18 30000 < 18
tr -> 10 20000 < 10
08 10000 < 08|<- cs=0F
** 00 >|invalid 00
gdtr-> {———>
I

** yseless, null selector

The digits within the tables are the offsets to each descriptor. The selector
values (CS=0F) indicate which selector normally accesses the descriptor.

Any selector containing the value 0-3 is the NULL selector which does not
specify the first entry in the GDT. It is a place holder when a selector does not
specify a descriptor. Any attempt to use the null selector results in a general
protection exception.

The descriptors in the LDT are 16-bit descriptors. This is one of the reasons that
16-bit programs still execute and fail in exactly the same manner as on previous
versions of OS/2.

Chapter 4. Stacks

This section describes how most OS/2 programs use the stack.

Understanding the stack is generally straightforward. The stack is defined by the
descriptor selected by the Stack Selector register or SS, and the stack pointer or
SP. Stacks are always read/write. There are two basic operations on a stack,
PUSH and POP. PUSH decrements the stack pointer and then stores the
operand at the offset provided by SP in the stack segment. POP moves the data
item at the offset provided by SP to the operand and then increments SP. SP
always points to the last item PUSHed. Stacks grow downward from higher
addresses to lower addresses.

4.1 Near CALL and RETurn

The near CALL instruction is used to invoke a subroutine. The instruction first
pushes IP into the stack and then updates IP so that it contains the offset of the
first instruction in the subroutine.

The near form of the RETurn instruction is really just a POP IP, which restores
the saved content of IP. Execution continues at the instruction following the
CALL.

4.2 Far CALL and RETurn

The far CALL instruction is used to invoke a subroutine. The instruction first
pushes CS into the stack, and then pushes IP. Next, it updates CS and IP so that
they contain the selector:offset of the first instruction in the subroutine.

The far form of the RETurn instruction first pops IP, which restores the saved
content of IP, and then pops CS, restoring it as well. Execution continues at the
instruction following the CALL.

4.3 Passing Parameters

Parameters are generally passed to a subroutine by putting them on the stack
with PUSH instructions prior to the CALL. Parameters are removed from the
stack in one of two ways:

By the caller (C convention), generally by adding a constant to SP.

By the subroutine (PASCAL convention), by specifying the operand for the
RETurn which is added to SP after the return address is POP'ed.

Note: C convention PUSHes parameters from right to left.
PASCAL convention PUSHes parameters left to right.

Because the NEAR versions of jump (JMP), CALL and RETurn DO NOT touch CS,
there can be no change of privilege level during execution of any of them. The
FAR versions of them do provide a new value for CS. If the new CS is the same
privilege level as the current level, the only change from above is that CALL
PUSHes CS before PUSHing IP. RETurn POPs IP before POPing CS.

[J Copyright IBM Corp. 1996 41

4.4 Receiving Parameters

There is a register which can be used by a subroutine to access parameters
very efficiently. This register is the Base Pointer. When it is used to obtain an
offset, the default segment is the STACK segment. If the entry to a subroutine
begins with these instructions the stack will look like the picture on the next

page.

PUSH BP
MOV BP,SP
SUB SP,sizeof(LOCAL DATA ITEMS)

This sequence is so common that there is a single instruction equivalent:
ENTER sizeof(LOCAL DATA ITEMS), 0

This allows all parameters to be accessed as BP plus the appropriate offset and
local data elements to be accessed as BP minus the appropriate offset.
The instructions to exit are either:

MOV SP,BP

POP BP

RET

or:

LEAVE

RET

4.5 Why do we Care About the Pascal Convention?

42

0S/2 Debugging

The Pascal convention was used by OS/2 1.x for those calls that access system
functions that are implemented in a higher privilege level (ring) than the
application. It is also used to call 16-bit Window Procedures.

Two examples are DosAllocSeg and DosRead. The decision was made to use
the Pascal convention because of the way the hardware protects access to
instructions and storage which is more privileged. This type of interface,
including hardware operation, is discussed in detail after basic stack operation
has been discussed.

4.6 Single Stack Frame
STACK

(higher addresses)
previous bp <—up here

parameter

parameter

return

bp —> caller's bp (caller's bp points)

local data

local data

sp —> local data (Tower addresses)

Note: A stack grows downward (expand down).

When this convention is followed the stack can be viewed as a series of stack
frames. Each stack frame has parameters and local data for some routine and
linkage to the stack frames used by the caller of that routine, etc. The saved BP
values create a linked list in the stack segment which has all the information
about each call including the return address. The process of following the chain
back is referred to as unwinding the stack and is an important aid to diagnosis
when working on a problem.

Chapter 4. Stacks 43

4.7 An Example of Using the Stack

This is a trivial example of how to pass and receive parameters, which is used to
document where the stack pointer and base pointer are at the end of each
instruction.

The example is 32-bit non-optimized code.

The subroutine, SUB, is designed to return the difference obtained by subtracting
the second parameter from the first.

First, the relevant C code:

(main) (sub)
z=sub(A,B); int sub(int x, int y)
. {
return x-y;

}
Next, the assembler code

(i) initial condition

PUSH B ; (01) SUB: PUSH EBP ; (04)
PUSH A ; (02) MOV EBP,ESP ; (05)
CALL SUuB ; (03) SUB ESP,nn ; (06)

ADD ESP,8 ; (12) .
MOV Z,EAX ; (f) final condition . (NOTE)

MOV EAX, [EBP+8] ; (07)
SUB EAX,[EBP+12] ; (08)

MOV ESP,EBP (09)
POP EBP (10)
RET (11)

Note: At this point, the stack frame is established. If another, lower-level
routine is called, the code to do so will look like the code seen in main, and a
new stack frame will be established by that routine as soon as it receives
control.

The new frame will be just below the current one.

44 os/2 Debugging

4.8 Stack Example

This example shows a stack, with ESP

ESP

(i,12)
(1)

(2,11)
(3,10)

(4,9)

(higher addresses)

?

B

A

address of ADD

EBP (used by main)

nn bytes

(6)

automatic

data

for ' sub’

(if used)

(Tower addresses)

on the left, and EBP on the right.

EBP
(i,10)

<-- where parameters for the
next subroutine are put

Note: The numbers in parentheses indicate where the register points

immediately after the numbered instruction on the previous page completes.

Chapter 4. Stacks

45

4.9 Multiple Stack Frames

46

0S/2 Debugging

BP -->

P -->

STACK SEGMENT

---PARMS FROM ASTART---
---RETURN TO ASTART----
-ASTART" S BASE POINTER-

---PARMS FROM MAIN-----
---RETURN TO MAIN------
---MAIN" s BASE POINTER-

---PARMS FROM SUB 1----
~--RETURN TO SUB 1-----
---SUB 1 BASE POINTER--

---PARMS FROM SUB 2----
~--RETURN TO SUB 2-----
---SUB 2 BASE POINTER--

high addresses

MAIN's FRAME

SUB 1 FRAME

SUB 2 FRAME

low addresses

4.10 A Stack From a Dump
In this example you could use DUMP01.DMP in the DUMPS.162 subdirectory.

DW SS:BP L10
001f:000014e6 1550 00f1 000f 02e8 18ae 0000 0000 0000
001f:000014f6 0000 0000 0000 0000 0000 0000 0000 0000

The first word, which is addressed by the current value in the
BP register, is the near address of the next stack frame, 1550.

The next two words are a far return address, with the offset to
the left of the selector. The return is to address F:FI1.

The words following the return address are the parameters, if any
were passed. There is no direct way to tell from the stack how
many parameters were passed, or expected. To see the next frame,

DW 1550 L 10
001f:00001550 0000 0300 000f 0001 1560 001f 156e 001f
001f:00001560 1568 001f 0000 0000 4544 4f4d 0000 15c6

In this stack frame, the BP chain pointer is zero. This usually
means that you have found all of the frames on this stack.

The return address for this frame is F:300. The parameters

seem to be an integer, 1, and three far addresses, 1F:1560,

1F:156e, and 1F:1568. A little further inspection shows that

the third address 1F:1568 is pointed to by the first, which is

highly unusual. Actually, this is the stack frame received by 'main’.
Main's parameters are as follows:

1. An integer, which tells it how many strings were found on the command line

2. The far address of a list of addresses, each of which points to one of
the strings

3. The far address of a second Tist of addresses, each of which points to
an environment variable. This list is terminated with a NULL POINTER, a far
address in which both the selector and off