
Table of Contents
Preface − Acknowledgements..1

General Information...2
Editor Philosophy..3
Features..3
Cursor Positioning...4

Enter Key Behaviour..5
PF Display Line..5
Popup Command Line and Command Stack..5

Installation...6
OS/2 Installation...6
Windows NT/95 Installation...7
DOS Installation...7
Linux Installation..8
Linux390 Installation..8
AIX Installation..9
Sun Solaris Installation...9
HP−UX Installation..10

Invoking The Editor...10
File Specification..11

Performance...12
Editor Performance Comparison − File Load...13
 Quit..13

Popup Windows...13
Ring Contents List..15
File Functions List..15
User Defined Popup Window...15

File Margins...15
Comment Formatting...16

Inline Comments...16
Block Comments...18
Comment Manipulation..18

Highlighting...19
Comment Highlighting...19
Keyword Highlighting..19
Cursor Line Highlighting..20

Splitting Text...20
Auto−Flow..20

Compiler Errors...20
Hidden Lines..21
Saved File Information..22
Marking Text...22
Recorded Key Sequences...23
Automatic Binary File Detection...23
Editor Settings..23

BROWSE..24
EA...24
HEX..24

Appendix C. Sample Profile for EOS2 Users i

#PREFACE

Table of Contents
INSMODE..24
LINEND..24
MSGMODE..24
SHADOW...25
SPAN..25
STATUS...25
SYNTAX..25
WRAP...25

Tutorial ..26
Screen Areas..26
Sample Edit Session...28

Basic Navigation...28
Marking...29
The Command Line..30
Hidden Lines...30

Default Key Assignments...32
Unshifted Keys...32

Alphanumeric Keys..32
Function Keys...32
Special Character Keys...33
Special Keys...35

Shifted Keys...35
Alphanumeric Keys..35
Function Keys...35
Special Character Keys...36

Control Keys..37
Alphanumeric Keys..37
Function Keys...39
Special Character Keys...39

Alternate Keys...40
Alphanumeric Keys..40
Function Keys...43
Special Character Keys...43

User Profile..46
Creating The User Profile..47
Comments..48
Key Remapping...48

User Profile Key Remap...48
Colour Remapping...53

Colour Remapping..53
X−Windows Colour Remapping..56

Strings..57
Synonyms...58
Bracket Matching Characters...59
Initial Editor Settings...60

Appendix C. Sample Profile for EOS2 Users ii

Table of Contents
Newline Character..60
Cursor Size..61
Saving Editor Information..61
Enter Key Behaviour..61
Insert Mode...62
Linend Setting...62
Popup Window Scrolling..62
Quick Bookmark Setting..62
Status Line..63
Automatic Bookmarks..63
Multiple Bookmarks...63
Command Line Location..64
Command Stack Window Size...64
Default Extension...64
Default List...65
Escape Character...65
Filename Completion Threshold..65
Linend Character...65
Null Character...66
OpenFile Paths..66
Quit Response When File Modified...66
Right Alt (AltGr) Key...66
Shell Prompt String...67
Beep Behaviour...67
X−Windows Font..67

Disk Specific Customisation..67
User Profile Disk Customisation..67

File Extension Specific Customisation..68
Default Extension...69
Inline Comment Formatting Control..69
Code Functions List..70
Syntax Expansion...74
Conditional Strings...75
Customising the OpenFile Function...76
Style Formatting...76
User Profile Extension Customisation..77

Commands and Macro Support..85
Macro Debugging..89
EXTRACT Command...89

Extract Options...90
Locate Text..94
Change Text...95
Popup Windows...97

List Box...97
Message Box...98
Prompt...99
Password Prompt..99

Appendix C. Sample Profile for EOS2 Users iii

Table of Contents
Editor Commands..99

ACCENT..99
ADD..100
ALL...100
ALT...101
APPEND...101
ASCII..102
AUTOBOOKMARK..102
AUTOSAVE...102
BACKSPACE...103
BACKTAB...103
BACKWARD...104
BOOKMARK...104
BOTTOM..105
BOTTOMSCREEN..105
BROWSE..105
C, CHANGE...106
CASECHAR...106
CASEWORD..106
CD...107
CENTRELINE..107
CENTRETEXT...107
CHANGES..108
CLIP..108
CMDLINE..109
CMDTEXT...109
COMMAND...109
COMMENTLINE...110
COMMENT_STYLE..110
COMPARE...111
CONDITIONAL...111
COPYLINE...111
COPYTOCMD...112
COUNT...112
CURR_ALT_PFLINE..113
CURR_CTRL_PFLINE..113
CURR_PFLINE..113
CURR_SHIFT_PFLINE...114
CURSOR..114
DATE..115
DELCHAR..116
DELDUPES..116
DELETE...117
DELSYM..117
DELWORD..117
DIAG..118
DOWN..118
DUPLICATES..119

Appendix C. Sample Profile for EOS2 Users iv

Table of Contents
E, EDIT, X..120
EA...120
EOF_TEXT...120
ERASEEOL..121
ERRORS...121
EXCLUDE..121
EXITRC..122
EXPAND..123
EXT...123
EXTRACT..123
FFILE..124
FIELDTEMPLATE..124
FILE..125
FIND_WORD...125
FORWARD..126
FT..126
FUNCWIN..126
GET...127
HELP..127
HEX..127
HIDEFILE..128
INPUT...128
INPUT_ERRORLINE..129
INSMODE..129
JOIN..129
KEY..130
KEYIN..130
KEYIN_NAME..131
KEYS_PLAY, PLAYBACK..131
KEYS_RECORD..131
KEYS_WRITE...132
L, LOCATE..132
LINECOLOUR...132
LINEFIELDS..133
LINEMACRO...133
LINEND..134
MA, MARGINS..135
MACRO..135
MARK..136
MATCH..137
MESSAGEBOX...138
MSG..138
MSGMODE..139
NAME...139
NEXT, NEXT_FILE...140
NEXT_ERROR..140
NEXT_FUNC...140
NEXT_PARA...141

Appendix C. Sample Profile for EOS2 Users v

Table of Contents
NEXT_SENTENCE...141
NEXT_SYM...141
NEXT_WORD..142
NOP..142
NUMFILES..143
OPENFILE..143
PAGEDOWN..143
PAGEUP...144
PASSWORD...144
PFLINE...144
PRESSKEY..145
PREVIOUS_FILE..145
PREVIOUS_FUNC..146
PREVIOUS_PARA..146
PREVIOUS_SYM..146
PREVIOUS_WORD...147
PROMPT..147
PUT...148
QQ, QQUIT..148
QUIT...148
REDO..149
REFORMAT...149
REFRESH...150
RENAME..150
REPEAT_FIND, REPFIND...151
REPLACE...151
RESOLVE_FN...152
RESTORE_FIND...152
REVERSE_FIND...152
RINGWIN...153
SAVE..153
SCROLL...154
SETRESULT..155
SHADOW...155
SHADOWTEXT...155
SHELL..156
SHOW...156
SHOWLINE..157
SORT..157
SPAN..158
SPLIT..158
SPLITJOIN...158
STATUS...159
STATUSTEXT...159
STYLE..160
SYNTAX..160
TAB..160
TABLINE...161

Appendix C. Sample Profile for EOS2 Users vi

Table of Contents
TABS..161
TIMER..162
TITLE...162
TOFEOF...163
TOF_TEXT...163
TOP...163
TOPLINE..164
TOPSCREEN..164
UNDO...164
UNDO_BLOCK...165
UNDO_LIMIT..165
UP...166
WINDOW...166
WINLINE...167
WINSELECT..168
WINSORT..168
WINWAIT..168
WRAP...169
nnn..169
/text</< |/& /text2/>>..170

Command Summary..170
Command Summary (A−H)...170
Command Summary (I−P)..172
Command Summary (Q−Z)..174

Hexadecimal Mode Considerations...176

Editor Differences Between Operating Systems..178
Differences in the Windows NT/95 Version...178
Differences in the DOS Version..178
Differences in the Unix X−Windows Versions...179
Differences in the Linux Curses Version...179

Appendix A. Rexx Program to Measure Editor Load Times...181

Appendix B. Sample Macro to Create a Popup Window..183

Appendix C. Sample Profile for EOS2 Users...185

Appendix C. Sample Profile for EOS2 Users vii

Preface − Acknowledgements

The X2 Editor was derived from Tim Baldwin's XE sample editor. Extensive modifications have been made
to the functionality and internal workings of the editor, but the author is indebted to Tim for sharing the
original source code.

In functionality X2 derives from the E family of editors, E3 and EOS2 in particular. The authors of these
editors are Clark Maurer, Bryan Lewis, Jean Christophe Bandini, Richard Redpath, Davis Foulger, and
Larry Margolis. E in turn was influenced by Personal Editor, by Jim Wyllie.

X2 also includes some features from VM's XEDIT editor. XEDIT was originally written by Xavier de
Lamberterie.

The Unix versions make use of X−Windows routines, most of which are taken from Scott Schaffer's VE
editor.

There have been dozens of people who have contributed ideas, macros, encouragement, and of course bug
reports. I can't name you all, but I am very grateful for the interest you have shown in this project.

The author may be contacted through the Internet at bwt@interlog.com, through IBM's internal VM system
on BLAIR at IBMCA, or on Lotus Notes at Blair Thompson/Markham/IBM@IBMCA.

Preface − Acknowledgements 1

General Information
Editor Philosophy♦
Features♦
Cursor Positioning

Enter Key Behaviour◊
PF Display Line◊
Popup Command Line and Command Stack◊

♦

Installation
OS/2 Installation◊
Windows NT/95 Installation◊
DOS Installation◊
Linux Installation◊
Linux390 Installation◊
AIX Installation◊
Sun Solaris Installation◊
HP−UX Installation◊

♦

Invoking The Editor
File Specification◊

♦

Performance♦
Popup Windows

Ring Contents List◊
File Functions List◊
User Defined Popup Window◊

♦

File Margins♦
Comment Formatting

Inline Comments◊
Block Comments◊
Comment Manipulation◊

♦

Highlighting
Comment Highlighting◊
Keyword Highlighting◊
Cursor Line Highlighting◊

♦

Splitting Text
Auto−Flow◊

♦

Compiler Errors♦
Hidden Lines♦
Saved File Information♦
Marking Text♦
Recorded Key Sequences♦
Automatic Binary File Detection♦
Editor Settings

BROWSE◊
EA◊
HEX◊
INSMODE◊
LINEND◊
MSGMODE◊
SHADOW◊
SPAN◊

♦

General Information 2

STATUS◊
SYNTAX◊
WRAP◊

This section contains general information about the editor and the thoughts that went into
building it. If you are new to the X2 Editor you may want to skip ahead to the Tutorial before
reading this chapter.

Editor Philosophy

The X2 Editor was designed and built to enhance the process of producing source code. As a
programmer's editor the most important considerations were performance and ease of use.
Wherever possible, the editor has been written so that it will automatically do things when
writing code. In order to do this, it must make certain assumptions about the format of the
file being edited. Some of these assumptions can be tailored through the user profile, but
others are imbedded in the editor. This may cut down on the flexibility of the interface, and
some people may not agree with the shortcuts which the editor makes for the user. It is felt
that this tradeoff is worthwhile for the productivity benefits that can be realised through such
a design.

While the OS/2 Presentation Manager (PM) environment provides a useful graphical
interface for most computer users, it does tend to use a large amount of the available
computer cycles for doing nothing more than painting the screen. The author feels that
productivity can be gained for serious programmers by utilising the full screen features of
OS/2 and foregoing the nice windows and fonts available on the desktop. It is for the
performance benefits that can be realised in such an environment that the X2 Editor was
built. If you are not an editor "power user" or you like a full graphical environment, this
editor is not your best choice.

The editor does not support interaction through a mouse interface, for several reasons:

A mouse is best used in a graphical environment, where it can address individual
pixels on the screen. The mouse resolution is very coarse in a VIO window.

◊

Mouse movement can be jerky and distracting in a text mode application. ◊
The mouse programming interfaces are not standardised between operating systems. ◊
It is felt that the impact to code size is not worth the possible benefits gained. ◊

Features

The X2 Editor is an ASCII text editor suitable for editing any flat text file. There are versions
available for the OS/2, DOS, Windows NT, Windows 95, AIX 4.1 & 4.2, Linux, and Solaris
operating systems.

The OS/2, Windows 95, and Windows NT versions are 32 bit VIO (full screen) applications,
which can be used either from a full screen session or from a VIO window. The Unix
versions are X−Windows applications, although a fullscreen CURSES version is also
available for Linux. In features the X2 Editor is most similar to the EOS2 editor, although it

Editor Philosophy 3

has some important differences from that editor, including:

The ability to selectively exclude and show file lines (folding) ◊
User definition of comment delimiter strings and keywords for highlighting on the
display

◊

Rexx macro support ◊
The maximum line length has been increased to 50000 characters ◊
Display and edit (not insert/replace) of binary files ◊
X2 provides an unlimited Undo/Redo stack ◊
X2 provides several popup windows showing information about the edit session ◊
While EOS2 is limited to OS/2 systems, X2 provides portability between several
popular operating systems

◊

X2 is easier to configure, through a single profile file ◊
Writing custom functions is done through a standard language (Rexx). This makes
macros easier to write and understand, but more files must be copied to use the same
editor on another PC.

◊

For information on configuring the X2 Editor to behave similarly to the default EOS2 editor,
consult Sample Profile for EOS2 Users.

This document describes the OS/2 version of the editor, except where noted. Details of the
differences between the three versions may be found in Editor Differences Between
Operating Systems.

Cursor Positioning

The cursor movement keys in the X2 Editor are defined to move the cursor where you are
likely to want it to go, depending on the file contents. For example:

The Enter key moves to the first non−blank character on the next line, unless the line
is blank, when it lines up underneath the first non−blank character on the previous
line. The exception to this rule is when the new line is blank, and the previous line
begins or ends with a left brace ({) character. In this case, the cursor is indented by
two spaces. The number of spaces is tailorable in the user profile, see User Profile
Extension Customisation. If the beginning of the new line is identified as a comment,
then the cursor will be moved to the first non−blank character of the comment itself
(i.e. the comment identification string is bypassed).

◊

If the End key is pressed to move the cursor to the end of the line, and the cursor is
already at the end of the line, it will be moved to the end of the next file line.

◊

Keys are defined to move to the beginning of the next and previous functions in the
file. When moving the cursor to a function, the cursor is moved to the top of any
comment block preceding the function. If screen scrolling is required or the new
function is located in the bottom half of the screen, the top of the function will be
positioned at the top of the screen. Otherwise, the cursor is just moved to the top of
the function. Code Functions List details how a function is recognised.

◊

Cursor Positioning 4

Enter Key Behaviour

By default, the Enter key moves the cursor to the first non−blank character on the next file
line. If the next line is blank, the cursor is positioned beneath the first non−blank of the
current line. If the cursor is on the last visible line of the file, it will not be moved.

To insert a new line, press the Ctrl−Enter key. This will leave the current line unchanged,
and a new line will be added beneath the current line. The cursor will be positioned on this
new line, beneath the first non−blank character on the old current line. The contents of the
new file line may vary. If the cursor starts on a line that looks like a block comment, then a
new, empty block comment line will be inserted. Otherwise, the new line will be completely
blank.

PF Display Line

The X2 Editor reserves the last line of the screen for the display of function key help. This
information will dynamically change depending on user interactions − if the user presses and
holds the Shift key, for example, the text will change to display the settings of the various
shifted function keys. There are four possible lines that can be displayed, for Shifted, Alt,
Ctrl, and unshifted states. These lines can be changed in the user profile.

Another feature of the PF display line is that it is used to indicate the CapsLock state of the
keyboard. If CapsLock is ON, the PF line will contain only upper case letters. If CapsLock is
OFF, the PF line reverts to the normal mixed case representation.

Popup Command Line and Command Stack

When the cursor is active in the file area, no command line is visible. When the cursor is
moved to the command line with the Esc or Alt−Enter keys, the command line is written over
the topmost visible file line on the screen. If commands have been issued previously, these
are also displayed under the command line. These lines represent the command stack, which
contains a maximum of 20 previous commands. They are saved in chronological order, the
most recent command at the top of the stack. The default size of the command stack window
is 10 lines, but all 20 commands can be scrolled with the cursor movement keys. As the
commands are scrolled, the current (highlighted) command is copied to the command line.
The command stack window size may be modified through the user profile. See Command
Stack Window Size for details.

As a command is typed on the command line, the first few characters are compared against
previous command stack entries. If a (case−insensitive) match is found, the current stack
entry will be highlighted. This provides a convenient way to recall previous commands with
only a few keystrokes.

The command stack is saved from session to session. It is saved on the XPATH (see
Installation) as XCMDSTCK.DTA. Note that if the XPATH is undefined, the path to X.EXE
will be used as the location for XCMDSTCK.DTA.

Enter Key Behaviour 5

Stacked Commands

When entering commands on the command line, multiple commands may be issued by
separating them with the Linend character. This character is defined as the caret (^). If the
linend character is found on an input line, everything up to that character will be issued as a
command, and subsequent text will be issued as another command when the first command
has completed. The linend character may be turned on and off with the LINEND command,
or modified through the profile (see Customising LINEND Character).

Installation

The X2 Editor is supported on various platforms: OS/2, Windows NT/95, DOS, Linux,
Linux390, AIX 4.1, AIX 4.2, Sun Solaris SunOS 5.6, and HP−UX 10.2. The executables are
delivered as X2.ZIP, XWNT.ZIP, XDOS.ZIP, xlinux.tgz, xlin390.tgz, xaix41.tgz,
xaix42.tgz, xsun_tar.Z, and xhp.tgz respectively; you have to unpack the files yourself. The
files are available from the World Wide Web (WWW) at address
http://blair.vsc.can.ibm.com (internal to IBM), or the public site
http://www.interlog.com/~bwt.

Useful macros are available on IBMPC in the X2 PROCS file, or in the xmacros.zip file on
the download WWW page. Each macro has the file extension .X. Macros may be installed by
copying selected files to a directory in your PATH. Macros must have file extension .X or
the editor will not find them. Commands and Macro Support discusses how to write your
own editor macros. Macro support is not available for the DOS version.

OS/2 Installation◊
Windows NT/95 Installation◊
DOS Installation◊
Linux Installation◊
Linux390 Installation◊
AIX Installation◊
Sun Solaris Installation◊
HP−UX Installation◊

OS/2 Installation

To use the X2 Editor on OS/2 follow these steps:

Download X2.ZIP to your hard disk in binary. Extract the editor files by executing
UNZIP X2.ZIP, to generate X.EXE, X2UTILS.DLL, X.INF, X.HLP, XAPIS.C,
XPROFILE.EXE, and XPROFILE.DEF in your current directory.

1.

Copy X.EXE to a directory on your PATH. 2.
Copy X2UTILS.DLL to a directory on your LIBPATH. This file contains useful
utility functions, but is not necessary to run the editor.

3.

SET XPATH=path. This statement can be added to your CONFIG.SYS. 4.
If you wish to customise the editor, create a customisation file using
XPROFILE.DEF as a guide.

5.

Generate X.PRO by running XPROFILE XPROFILE.DEF yourprof, where
yourprof may be omitted if you want the default configuration. Creating The User

6.

Popup Command Line and Command Stack 6

Profile contains detailed profile customisation instructions.
Copy X.PRO to the XPATH. 7.
Edit a file with X filename. 8.
The online version of the help information may be displayed with VIEW X.INF. 9.

Windows NT/95 Installation

The same executables can be used on either Windows NT or Windows 95. To use the X2
Editor on these systems follow these steps:

Download XWNT ZIPBIN to your hard disk as XWNT.ZIP, in binary. Extract the
editor files by executing UNZIP XWNT.ZIP, to generate XWNT.EXE,
XWUTILS.DLL, X.HLP, XAPIS.C, XPROFWNT.EXE, XPROFILE.DEF, and
XWNT.INF in your current directory.

1.

(Optionally) rename XWNT.EXE to X.EXE. 2.
Copy X.EXE and XWUTILS.DLL to a directory on your PATH. 3.
On Windows 95, SET XPATH=path in AUTOEXEC.BAT or from the command
line. On Windows NT, select Settings from the Start menu, then Control Panel. Open
the System control panel, and go to the Environment notebook page to set the
XPATH variable.

4.

If you wish to customise the editor, create a customisation file using
XPROFILE.DEF as a guide.

5.

Generate XW32.PRO by running XPROFWNT XPROFILE.DEF yourprof, where
yourprof may be omitted if you want the default configuration. Creating The User
Profile contains detailed profile customisation instructions.

6.

Copy XW32.PRO to the XPATH. 7.
Edit a file with X filename. 8.
The online version of the help information may be displayed with IVIEW
XWNT.INF. IVIEW comes with VisualAge C++ and probably some other IBM
products, but cannot be distributed with X2 due to copyright restrictions.

9.

If you want to run Rexx macros with the Windows NT version, you'll have to install Object
Rexx, which is available as OBJREXXW PACKAGE on the PCTOOLS disk. It is also
available externally, for a fee, from http://www2.hursley.ibm.com/orexx/orexx.htm.
Alternatively, you may install the Regina Rexx interpreter, which is freely available from
ftp://ftp.lightlink.com/pub/hessling/Regina/.

DOS Installation

To install the editor for DOS:

Unpack XDOS.ZIP with UNZIP: UNZIP XDOS.ZIP. This will generate
XDOS.EXE, XPROFDOS.EXE, XPROFILE.DEF, and X.HLP.

1.

Copy XDOS.EXE to a directory on your PATH 2.
SET XPATH=path. This statement can be added to your AUTOEXEC.BAT. 3.
If you wish to customise the editor, create a customisation file using
XPROFILE.DEF as a guide.

4.

Generate XDOS.PRO by running XPROFDOS XPROFILE.DEF yourprof, where
yourprof may be omitted if you want the default configuration. Creating The User
Profile contains detailed profile customisation instructions.

5.

Windows NT/95 Installation 7

Copy XDOS.PRO to the XPATH 6.
Edit a file with XDOS filename7.

Of course, XDOS.EXE may be renamed to anything you desire. Note that the profile may not
be renamed; it must always be XDOS.PRO.

Linux Installation

To install the editor for Linux:

Copy xlinux.tgz to your Linux system in binary. 1.
Unpack the files with gunzip and tar: gunzip xlinux.tgz followed by tar −xvf
xlinux. This will generate the executable files x, xx, xprofile, and xutils.so, as well as
xprofile.def and xprofile.unx, and some other utilities and help files.

2.

Copy x and xx to a directory on your PATH 3.
Set the X2PATH environment variable according to your shell. 4.
Copy xutils.so to a directory on your LD_LIBRARY_PATH5.
If you wish to customise the editor, create a customisation file using xprofile.def as a
guide.

6.

Generate XUNIX.PRO by running xprofile xprofile.def xprofile.unx yourprof,
where yourprof may be omitted if you want the default configuration. Creating The
User Profile contains detailed profile customisation instructions.

7.

Copy XUNIX.PRO to the X2PATH 8.
Edit a file with x filename. If you wish to use the X−Windows version
(recommended), use xx filename to edit a file.

9.

The above installation may be simplified by use of the x2install utility that comes packaged
with the rest of the files. If you decide to use x2install, make sure you read the code
before running it so you understand what it will do.

The Linux version supports two versions of Rexx − Object Rexx and Regina. Rexx for Linux
is available from http://service2.boulder.ibm.com/dl/rexx/orexxlinux−d or
http://www2.hursley.ibm.com/orexx/orexx.htm. Alternatively, you may install the Regina
Rexx interpreter, which is freely available from ftp://ftp.lightlink.com/pub/hessling/Regina/.

Linux390 Installation

To install the editor for Linux390:

Copy xlin390.tgz to your Linux390 system in binary. 1.
Unpack the files with gunzip and tar: gunzip xlin390.tgz followed by tar −xvf
xlin390. This will generate the executable files xx, xprofile, and xutils.so, as well as
xprofile.def and xprofile.unx, and some other utilities and help files.

2.

Copy xx to a directory on your PATH 3.
Set the X2PATH environment variable according to your shell. 4.
Copy xutils.so to a directory on your LD_LIBRARY_PATH and set symbolic links
to it.

5.

If you wish to customise the editor, create a customisation file using xprofile.def as a
guide.

6.

Generate XUNIX.PRO by running xprofile xprofile.def xprofile.unx yourprof,7.

Linux Installation 8

where yourprof may be omitted if you want the default configuration. Creating The
User Profile contains detailed profile customisation instructions.
Copy XUNIX.PRO to the X2PATH 8.
Edit a file with xx filename. 9.

The Linux390 version supports IBM Object Rexx.

AIX Installation

Note that the following instructions use the generic name xaix.tgz as a placeholder for either
xaix41.tgz or xaix42.tgz. Please substitute the correct name depending on whether you are
running AIX 4.1 or AIX 4.2 and above. To install the editor for AIX:

Copy xaix.tgz to your AIX system in binary. 1.
Unpack the files with gunzip and tar: gunzip xaix.tgz followed by tar −xvf xaix.
The 4.1 version will generate xx, xxrexx, xaixutils.dll, and xprofile, along with
configuration files xprofile.def and xprofile.unx, a sample help file xunix.hlp, and a
README file. The 4.2 version generates xaixutils.so instead of xaixutils.dll, and
does not include a copy of xxrexx as Rexx support is dynamically loaded into the 4.2
version.

2.

Copy xx and/or xxrexx to a directory on your PATH 3.
Set the X2PATH environment variable according to your shell. 4.
Copy xaixutils.dll or xaixutils.so to a directory on your LIBPATH 5.
If you wish to customise the editor, create a customisation file using xprofile.def as a
guide.

6.

Generate XUNIX.PRO by running xprofile xprofile.def xprofile.unx yourprof,
where yourprof may be omitted if you want the default configuration. Creating The
User Profile contains detailed profile customisation instructions. You may want to
specify a path to xunix.hlp, which is the help file specified in xprofile.unx.

7.

Copy XUNIX.PRO to the X2PATH 8.
Edit a file with xx filename. If you have Rexx installed on your 4.1 system, you may
prefer to use xxrexx filename to edit files and run macros.

9.

Sun Solaris Installation

To install the editor for Solaris SunOS 5.6:

Copy xsun_tar.Z to your Solaris system in binary. 1.
Unpack the files with uncompress and tar: uncompress xsun_tar.Z followed by tar
−xvf xsun_tar. This will generate xx, xutils.so, and xprofile, along with
configuration files xprofile.def and xprofile.unx.

2.

Copy xx to a directory on your PATH 3.
Set the X2PATH environment variable according to your shell. 4.
Copy xutils.so to a directory on your LD_LIBRARY_PATH 5.
If you wish to customise the editor, create a customisation file using xprofile.def as a
guide.

6.

Generate XUNIX.PRO by running xprofile xprofile.def xprofile.unx yourprof,
where yourprof may be omitted if you want the default configuration. Creating The
User Profile contains detailed profile customisation instructions. You may want to
specify a path to xunix.hlp, which is the help file specified in xprofile.unx.

7.

AIX Installation 9

Copy XUNIX.PRO to the X2PATH 8.
Edit a file with xx filename. If you wish to use Rexx for macro support, you must
install the Regina Rexx interpreter, which is available from
ftp://ftp.lightlink.com/pub/hessling/Regina/.

9.

HP−UX Installation

To install the editor for HP−UX:

Copy xhp.tgz to your HP−UX system in binary. 1.
Unpack the files with gunzip and tar: gunzip xhp.tgz followed by tar −xvf xhp.
This will generate the executable files xx, xprofile, and libxutils.sl, as well as
xprofile.def and xprofile.unx, and some help files.

2.

Copy xx to a directory on your PATH 3.
Set the X2PATH environment variable according to your shell. 4.
Copy libxutils.sl to a directory on your SHLIB_PATH. 5.
If you wish to customise the editor, create a customisation file using xprofile.def as a
guide.

6.

Generate XUNIX.PRO by running xprofile xprofile.def xprofile.unx yourprof,
where yourprof may be omitted if you want the default configuration. Creating The
User Profile contains detailed profile customisation instructions.

7.

Copy XUNIX.PRO to the X2PATH 8.
Edit a file with xx filename. If you wish to use Rexx for macro support, you must
install the Regina Rexx interpreter, which is available from
ftp://ftp.lightlink.com/pub/hessling/Regina/.

9.

Invoking The Editor

From the operating system command line, the editor is invoked with the following syntax:

 <d:\path\>X <fn1 fn2... <−B> <−BIN> <−Ccmd>> <−ERR>
 <−NOPROF> <−NOTABS> <−NOUNDO> <−Pprofname>
 <−Q> <−S> <−T> <−TABS> <−TOP>

where:

d:\path\
The path to X.EXE. Not required if it is in the current directory or on the PATH.

fn1 fn2
The file(s) to be loaded. If no files are specified, X2 loads a new, empty file with no
name. If any are found, they are used for the current invocation; otherwise, a blank
file is created. A status message is displayed for each file as it is loaded. If a file is
greater than 500 kilobytes in size, the status message will be updated for every 10
percent of the file that has been processed. See File Specification for details on
specifying a file name.

−B
Load the file(s) in Browse mode. No changes to the file are permitted when it is
being browsed. Browse mode is indicated by the text "Brw" on the status line instead
of "Rep" when the cursor is in replace mode. Browse mode is turned on
automatically when a file is open for read/write by another process, or when the

HP−UX Installation 10

Read Only attribute bit is set for the file.
−BIN

Load the file in Hexadecimal view.
−Ccmd

Execute the given cmd after the file(s) have been loaded. This can be any command
which can be issued from the command line, including macros. If parameters are
required, the string may be enclosed in quotes, e.g. "−Ccmd parm1 parm2...".

−ERR
Load and parse a compiler error file fn.ERR.

−NOPROF
Load the file without checking for and loading X.PRO.

−NOTABS
Expand all embedded tab characters into blanks when the file is loaded.

−NOUNDO
Suppress the undo stack − no file changes will be saved for possible restoration.

−Pprofname
Override the default profile name with the specified profile. This switch overrides
both the system default profile name and any profile name specified with the XPRO
environment variable.

−Q
Quiet mode. All editor screen updates are withheld until the file(s) are loaded and
any initial commands have been executed. If initial commands result in no file being
loaded, the screen is not cleared upon exit.

−S
Search sub−directories. Any files from the supplied directory and all its
sub−directories that match the supplied specification will be loaded into the editor.
This option is only available in the OS/2 version.

−T
View tabs. No tab expansion will be performed for this file.

−TABS
View tabs. No tab expansion will be performed for this file.

−TOP
Initialise the cursor to the top line of the file.

When editing a file with the internal EDIT and X2 commands, the same options may be
used, with the following differences and exceptions:

If a file specified is already in the ring, a second copy will not be added to the ring.
Instead, the original copy will be made the current file.

◊

If no filename is specified, the next file in the ring will be made the current file. ◊
The −NOPROF and −P options will be ignored. ◊

Options begin with a dash (−) for Unix compatibility. On non−Unix systems, a slash (/) may
be used in place of the dash.

File Specification

Files are loaded either as parameters to X.EXE, or as parameters on the EDIT command.
Several shortcut keys are available when specifying file names:

File Specification 11

Any occurrence of an asterisk (*) wildcard character in the filename or extension
will be expanded to match any sequence of characters in that position.

◊

Any occurrence of a question mark (?) wildcard character in the filename or
extension will match any single character in that position.

◊

If the path is replaced with an equals sign (=), the path is assumed to be the same
path as the currently edited file.

◊

If the filename is replaced with an equals sign, the filename is taken from the
currently edited file.

◊

If the file extension is replaced with an equals sign, the extension is taken from the
currently edited file.

◊

A check is made for the dollar sign ($), and if found a check for an environment
variable with the same name is made. If the environment variable is found it will be
substituted within the filename; otherwise, it will remain unmodified.

◊

The following table contains examples of file name resolution. The currently edited file is
C:\MYDIR\MYFILE.TST. An environment variable named X2PATH is set to
C:\TOOLS\X2.

Input Resolved Name

=OTHER.FIL C:\MYDIR\OTHER.FIL

=.OUT C:\MYDIR\MYFILE.OUT

=MYNAME.= C:\MYDIR\MYNAME.TST

C:\OTHER\= C:\OTHER\MYFILE.TST

C:\OTHER\MYTEST.= C:\OTHER\MYTEST.TST

C:\OTHER\=.OUT C:\OTHER\MYFILE.OUT

$X2PATH\XPROFILE.DEF C:\TOOLS\X2\XPROFILE.DEF

Performance

A great deal of effort was invested in making file load times as fast as possible in the X2
Editor. Editor Performance Comparison − File Load and Editor Performance Comparison −
File Load & Quit show the results of performance comparisons between the X, EOS2, and
T2 editors. Editor Performance Comparison − File Load shows the time required to load the
editor and a file, while Editor Performance Comparison − File Load & Quit shows the time
required to load the editor and a file, and to quit back to a fullscreen prompt. The first results
were obtained with a stopwatch, while the second results were obtained with the program in
Rexx Program to Measure Editor Load Times. The second set of results are more reliable.

These tables show the results of the tuning efforts combined with the performance benefits of
32 bit compilation. While X2 is comparable in speed against T2 and EOS2 (both 16 bit
editors) for small files, it is much faster when loading larger files.

Performance 12

Editor Performance Comparison − File Load

The table compares file load times for 3 editors against 3 files: T1 was 1000 lines of 10
characters each, T2 was 10000 lines of 10 characters each, and T3 was 100000 lines of 10
characters each. Times are in seconds as measured by a stopwatch, starting from an OS/2
fullscreen command line. The load time measures the time taken from hitting Enter to seeing
the file data on the screen. The test machine was a PS/2 Model 77 running a 486SX chip at
33MHz. Times are the average of 3 trials for each editor on each file.

Editor T1 T2 T3

EOS2 4.13A 0.78 1.38 6.46

T2 2.20 0.47 1.01 8.45

X2 1.26 0.61 0.73 2.94

Quit

The table compares times to load a file and then quit for 3 editors against 3 files: T1 was
1000 lines of 10 characters each, T2 was 10000 lines of 10 characters each, and T3 was
100000 lines of 10 characters each. Times are in seconds as measured by a Rexx program
(see Appendix A) starting from an OS/2 fullscreen command line. The test machine was a
PS/2 Model 77 running a 486SX chip at 33MHz. Times are the average of 3 trials for each
editor on each file.

Editor T1 T2 T3

EOS2 4.13A 0.67 0.94 5.51

T2 2.20 0.26 0.89 10.60

X2 1.26 0.43 0.52 2.39

Popup Windows

X2 provides several windows to help navigate between files and inside a single file. Each of
these windows is displayed on the screen in response to user keys. When a popup window is
active, several default keys have slightly different functionality:

Backspace
Removes the last character from the filter string, and re−displays the window with all
entries that match the new filter string.

Ctrl−End, Ctrl−PgDn
Moves to the last entry in the popup window.

Ctrl−Home, Ctrl−PgUp
Moves to the first entry in the popup window.

Cursor Down
Moves the selected entry down one position. If the cursor is already at the end of the

Editor Performance Comparison − File Load 13

list, it may wrap back to the first entry, depending on the value of the
popup_wrap setting.

Cursor Up
Moves the selected entry up one position. If the cursor is already at the top of the list,
it may wrap down to the last entry, depending on the value of the
popup_wrap setting.

Cursor Left
Scroll the entire popup window one character to the left. If the left edge of the
window is being displayed, this key has no effect.

Cursor Right
Scroll the entire popup window one character to the right. If the right edge of the
longest window line is visible, this key has no effect.

End
Scroll the popup window maximum right. The last character of the longest line will
be visible.

Enter
Selects the highlighted entry. The select action is dependent on the type of window
being displayed.

Ctrl−Enter
Copies the highlighted entry text into the current file, at the current cursor position.

Alt−Enter
Inserts the highlighted entry text into the current file, as a new line after the current
line.

Escape
Removes the window from the screen.

Home
Scroll the popup window maximum left. The first character of each line will be
visible.

Page Down
Page down, from the current cursor position. If the cursor is on the first row the
window is scrolled a full page. If the cursor is somewhere other than the first row,
the cursor row is moved to be the top row of the window.

Page Up
Page up, from the current cursor position. If the cursor is on the last row the window
is scrolled a full page. If the cursor is somewhere other than the last row, the cursor
row is moved to be the last row of the window.

Character keys
"Filters" the window entries according to the letter(s) typed. The entered text will be
matched against the beginning of each line or the beginning of the sort sequence, if
available, such that only lines beginning with the filter text will be displayed. The
filter text is displayed on the top left corner of the window. Note that the highlighted
entry always moves to the top window item when a character key is pressed.

All other keys will remove the window, and then perform their normal function. Note that the
functions defined to these default keys may be moved to other keys, in which case the new
key will have the stated function. While the popup window is active, the PF line will change
to provide information about the action of the Enter, Ctrl−Enter, and Alt−Enter keys.

Editor Performance Comparison − File Load 14

Ring Contents List

Navigation between files when there are many files in the edit ring is sometimes difficult. A
Ring Window can be displayed by pressing Ctrl−F12 on the default keyboard layout. This
key will display a popup window containing a list of the names of the files in the ring, sorted
alphabetically, with the current file selected. Any files which have been modified are
displayed with the filename highlighted in the window_emphasis colour. The width defaults
to 40 characters, but will dynamically re−size itself to display as much of the longest file
name as possible.

If the Enter key is pressed while this window is active, the file at the cursor position will be
made the new current file. No change is made to the order of files in the ring.

File Functions List

Code Functions List describes how to set up the user profile so that the X2 Editor can
recognise functions in various programming languages. This information is used by the
FUNCWIN command to display a window containing all the functions that are defined
within the current file. Selecting a line and pressing Enter will move the cursor to the
beginning of the specified function definition.

User Defined Popup Window

An interface exists to allow a user macro to create and manage a popup window. The
commands WINDOW, WINLINE, WINSORT, and WINWAIT are used to manage a popup
window, as follows:

WINDOW creates the window and defines its dimensions and the maximum number
of lines to be inserted.

◊

WINLINE is used to add a line to the window. The lines are added in sequential
order.

◊

WINSORT is used to sort the lines in the window. ◊
WINWAIT may be used to wait while the window is displayed. Control is returned to
the macro (i.e. WINWAIT terminates) when the window is dismissed.

◊

Sample Macro to Create a Popup Window contains a sample macro which uses the
WINDOW and WINLINE commands to create and respond to a popup window.

File Margins

X2 defines four margins for text formatting purposes. These are:

The left auto−flow margin 1.
The right auto−flow margin 2.
The left comment margin 3.
The right comment margin 4.

When entering text into a document it is useful for the text of a line to automatically split
when it reaches a certain length. This allows you to continue typing and still see the entire

Ring Contents List 15

text that you have entered. Every time you enter a character, the length of the current line is
checked against the right auto−flow margin. If the line is too long, the line will be split at the
first blank to the left of this margin. If the cursor is positioned at the end of the line it will be
moved to the end of the newly inserted line; otherwise, it remains in the same location on the
screen.

The text that is split from the end of the current line will be placed on a new line if one of the
following conditions is met:

INSERT mode is OFF 1.
The indentation of the next line is different from the current line 2.
The next line looks like a list, i.e. it begins with a dash and a space (−) 3.
The next line is read only 4.
The next line begins with either a period (.) or colon (:) 5.

In all other cases, the split text is inserted into the beginning of the following line. An attempt
is made to align the new text with the current line. The same indentation will be used unless
the current line looks like a list, in which case the new line will be padded to align with the
text following the dash on the current line.

The file margins may be queried or changed with the MARGINS command. Default margins
are set in the user profile; however, once changed, they are saved with the file on disk.

Similar to file margins, comment margins are used to identify text that is being entered into a
comment block. If the beginning of the line and end of the line match the comment
identifiers that are in effect for the current file, and the last entered character will move the
cursor onto the trailing comment text, a new block comment line will be inserted at the
current position, and the cursor positioned for further typing.

The comment margins are mainly used when formatting block and inline comments. They
are discussed in detail in the following section.

Comment Formatting

The capability exists to define two strings for any file extension, which will be recognised by
the editor as indicating a comment. User Profile Extension Customisation discusses setting
up these strings.

Inline Comments

Comments are very important when writing code, but care must be taken that they do not
confuse the code by making it appear cluttered. Aligning comments is one way to make the
code appear neater and easier to read, but manually aligning comments is an unnecessary
chore which can be handled quite readily by the editor, if it is provided with sufficient
formatting rules. The X2 Editor contains five settings for inline comment formatting:

Right aligned. For the Right aligned setting, the comment is pushed to the right of
the screen, so the rightmost edge of the comment is located in the right comment
formatting column. Any extraneous whitespace within the comment is removed.

◊

Comment Formatting 16

Left aligned. For this setting, an attempt is made to push the beginning of the
comment into column 40 of the file by padding the comment on the right with
blanks. If the code text or comment is too long, the comment will be tabbed by the
second comment_column amount until it fits. To change the leftmost comment
column and the tab amount from the default of 40,8, see User Profile Extension
Customisation.

◊

C and C++ specific. This is a special modification of the above rules for the C and
C++ languages. For C code, the comment is left aligned if one of the following
conditions is met:

The code begins with the '#' character ⋅
More than one word is found before any of the following characters:
;=<>](/,|&+−*"^.

⋅

For C++ code, the comment is left aligned if one of the following conditions are met:
The code begins with the '#' character ⋅
The code begins with the word "class" ⋅

In all other cases, the comment will be right aligned.

◊

None. Do not format comments at all. Comments are left the way they were entered
into the file. This is the default value.

◊

If a block mark exists over the comment, and it is only a single line deep, it will be moved
with the comment.

Inline Comment Conversion

Inline comments are defined as comments which are located on the same line as some text. A
shortcut method of entering these comments is defined by the editor. Simply indicate the
comment with the quick_comment string defined for the file extension. The editor will detect
this shorthand when you move off the current line with the cursor down or Enter keys. It will
be converted by adding the comment prefix and suffix strings to the body of the comment,
and aligning it to the desired margins. See the following picture for an example of how this
works.

By default, the quick_comment string is "", which means no comment conversion will be
performed. Comments are also not converted if a regular comment string is found on the
same line. Quick comment conversion may be turned on in the user profile by defining a
comment_prefix and a quick_comment string (see User Profile Extension Customisation).

if (a > b)
 max = a; // New maximum value

if (a > b)
 max = a; /* New maximum value*/

Automatic Comment Conversion

Inline Comments 17

Block Comments

Block comments are defined as comments which are on their own without any code on the
line. These may be formatted with the Alt−P key or the REFORMAT command. X2 contains
special logic for formatting these comments. First, the line is scanned for occurrences of the
prefix and suffix comment strings. If found, these strings are removed. Any multiple blanks
in the line are removed. Two spaces are inserted after every sentence, where a sentence is
defined as follows:

A sentence must end with either a period, question mark, or exclamation mark. ◊
If it ends with a period, the character two positions before it must not also be a
period. This accounts for abbreviations like I.B.M.

◊

The word at the end of the sentence must not contain a colon or equals sign. The
presence of either of these characters is assumed to indicate a GML markup tag.

◊

The formatting will continue until one of the following conditions is reached:

The end of file is reached ◊
A blank line (after removal of comment prefix and suffix) is reached ◊
A line beginning with the character ":" or "." is reached ◊
A line beginning with a highlight_tags prefix string is reached ◊
A line is reached which is longer than the comment formatting length, and which
contains no blanks

◊

Finally, the text is formatted to fit within the defined reflow margins, the comment strings are
added to the beginning and end of every line, and the line is written to the file. The cursor
will be placed at the next file line which was NOT processed. Note that comment strings are
not always desired in the reformatted output. They may be excluded with the user profile.
See User Profile Extension Customisation for details.

For editing purposes block comment markets are treated as close to invisible as possible. For
example, when the cursor is moved to a new line it will normally move to the first non−blank
text on that new line. If, however, the new line is a block comment, the cursor is moved to
the first text after the comment start. Similarly, inserting text at the end of the block
comment will automatically insert a new block comment and position the cursor
appropriately to continue typing without interruption. Finally, deleting characters within a
block comment will not adjust the right comment marker, so the block comment will remain
intact.

Comment Manipulation

If comment prefix and suffix strings have been set up through the user profile, they will be
used when re−formatting comments. Several checks are made on the supplied strings for use
with different formatting jobs:

When entering a solid line of asterisks (default key Alt−8), the prefix string is added
to the beginning of the line and the suffix string to the end of the line. If either the
prefix or suffix string contains a blank, it is removed before being added to the
output text.

◊

Block Comments 18

When block formatting a paragraph of text, any existing comments are first removed
from the text, even if they don't include leading or trailing spaces. The output
comment strings will be padded with spaces as appropriate if they don't already
include spaces.

◊

When formatting inline comments, comments are recognised whether they include
spaces or not. The output comment uses the supplied prefix and suffix strings with
no modification.

◊

Highlighting

When writing code it is often useful if parts of the code can be displayed in a different colour
from the normal text colour. X2 provides the ability to display comments, special keywords,
and quoted strings in a different colour. Highlighting is provided on a text line in a hierarchy
of precedence, which is:

Marked text is always displayed in the mark colour, even if the text contains
comments or keywords

1.

Comments are displayed with the comment colour, even if they contain keywords 2.
Quoted strings are displayed using the quotes colour, even if they contain keywords 3.
Keywords are displayed with the keywords or alt_keywords colour 4.
All other text is displayed using the data colour. 5.

Comment Highlighting

Before any line is displayed on the screen, it is scanned for comments. If a comment is
detected, it will be displayed in a different colour, which can be modified in the user profile.
If the comment colour is chosen to be the same as the normal text colour, this feature will be
effectively disabled.

X2 does not attempt to detect comments which may span more than one line, nor code which
has been commented out with such tricks as the C language #if 0 preprocessor command. To
add this feature would require a language−sensitive file parser, and would slow down
processing speed.

Keyword Highlighting

Two sets of keywords may be defined in the user profile, which will be displayed using the
keywords or alt_keywords colour if detected in an uncommented section of a line. Keyword
detection is limited to the following rules:

The keyword search is case−insensitive, unless the keyword_case setting is exact◊
The character before the keyword and the character after the keyword must not be
alphabetic (in the range A−Z)

◊

Keywords are not highlighted if they fall within a commented, quoted, or marked
area.

◊

The keyword search logic necessarily involves a certain overhead in the display of each line.
The performance penalty will increase as the number of keywords increases. If you find the
performance to be unacceptable, this feature may be disabled by removing all occurrences of

Highlighting 19

the highlight_keyword and alt_highlight_kw strings from your profile with the
_RESET keyword.

Language context keywords are sometimes desired to have special capitalisation, either for
cosmetic reasons or because the language is case sensitive. The keyword_trans profile setting
can be used to automatically translate keywords on changed lines into all upper case, all
lower case, or into mixed case.

Multiple highlight_keyword and alt_highlight_kw profile lines may be specified for a given
extension. Note that keywords must be separated in the profile by a comma but not a space,
as spaces may be considered part of the keyword text.

Cursor Line Highlighting

The default editor highlights the current or cursor line the same as other file lines, but this
may be changed in the user profile with the csr_line colour setting. Setting it to an explicit
colour will only change the portion of the current line that would normally be displayed with
the data colour, but using the special keyword reverse will cause the entire current line
contents to be displayed using the reverse of the normal colours. For example, if a character
would normally be displayed with black on white, it would be displayed for the cursor line as
white on black.

Splitting Text

Normally when you split a line the line is terminated at the cursor position, and everything to
the right of the cursor is inserted as a new line in the file. If the current line contains an
unmatched left parenthesis "(" before the cursor position, the new line will be lined up
beneath the first non−blank character following the parenthesis. If the current line begins
with a bulleted list, i.e. it begins with "− ", the new line will be aligned beneath the beginning
of the list text. If the current line contains no left parenthesis and does not indicate a list, the
new line will be lined up with the first non−blank character on the old line.

If the current line is marked with a line mark, and the following line is unmarked, the mark
will be extended to include both lines after the split.

Auto−Flow

The X2 Editor defines file margins which will cause text to be automatically split when a line
gets too long. For example, if the file margins are defined as 1 70 1 77, any character entry
that causes the current line to extend beyond position 70 will cause the current line to be split
at the first blank before column 70. If the cursor is at the end of the current line, it will be
moved to the end of the newly inserted line.

Compiler Errors

When compiling source code, most programmers will see warnings and error messages from
the compiler. Instead of writing down the source file, line of the error, and the error message,
it is convenient to let the computer do some of the work. The author makes extensive use of

Cursor Line Highlighting 20

Make files to compile source code, and uses the following inference rule line to speed up
detection and fixing of errors:

 $(CC) $(CCOPTS) $*.c >$*.ERR 2>&1 || x $*.c −ERR

This rather cryptic looking line does many things for the user. First, it uses the compiler
defined by $(CC) to compile the source code, represented by $*.c, with the options defined
by $(CCOPTS). It re−directs the output from the compiler to a file with the same filename as
the source code, and an extension of ERR. The directive "2>&1" makes sure that all error
messages that would normally be written to stderr are also written to the .ERR file. If the
return code from the compiler is non−zero, the editor will be invoked on the source file with
the −ERR option. −ERR from the operating system command line will automatically load the
.ERR file and insert a specially−marked comment at the appropriate line in the source file for
each error it finds. Ctrl−N can be used to locate the next error comment.

Compiler error output differs with different compilers and source languages. The compiler
error parsing rules are controlled through the openfile_id parameter in the user profile, which
is defined for all files with extension .ERR. Note that the error parsing scans file lines for
valid filename characters; all characters that are recognised by the operating system are
considered valid except the left and right parentheses, which are commonly used in compiler
output to delimit such things as error line numbers. The equals sign (=) is also not accepted
as it has a special meaning to the editor.

If a file is loaded with the −ERR option, you will hear a short beep from the speaker. This is
to alert you that you have an error in your code. Usually when running a long MAKE
program under OS/2, you will want to take advantage of multitasking and do something else
while waiting. If your MAKE is running in a fullscreen session which is not visible to you,
an audible notification of an abnormal MAKE termination can be quite useful.

When all errors have been corrected, there is no need to remove the comment lines which
were inserted by −ERR. Simply saving the file will cause the editor to scan for these lines
and remove them before saving the file to disk. If they are in the way, they may be removed
with Ctrl−O.

When the editor is ended, it will terminate with a special return code of −1. This indicates to
the MAKE program that one of its commands failed, so it will not try to continue with the
make.

Compiler error parsing is known to work with the following compiler output:

IBM C/Set++ ◊
IBM toolkit IPFC ◊
IBM C/2 and early Microsoft C compilers ◊
JAVAC Java compiler ◊
Microsoft MASM ◊
AIX xlc ◊

Hidden Lines

The X2 Editor has the ability to selectively exclude and include lines from the display. The

Hidden Lines 21

lines are still part of the file and will be saved to disk with the rest of the file, but are not
viewed. In addition, any mark operation (copy, move, delete, shift left or right) that spans
one or more excluded lines will only affect the visible lines in the mark. Optionally, a
shadow line can be displayed to represent the hidden lines. An ALL command is also
provided which works much like XEDIT's ALL command. See ALL for a detailed
description of the ALL command.

Saved File Information

When a file is saved with the X2 Editor, additional information is written to the file's
extended attributes (EAs). Specific editor settings are saved, so that when the file is next
edited, the edit environment can be restored as much as possible. The settings that are saved
and restored are:

The cursor row. ◊
The cursor column. ◊
The margin settings, if changed from the defaults. ◊
The tab settings, if changed from the defaults. ◊
The bookmark setting(s). ◊
The tab compression setting, if set with the /NOTABS or /TABS options on the
SAVE or FILE commands.

◊

The comment formatting style. ◊

If no saved information is found for a file, or the /TOP option is used, the cursor position will
default to the first row of the file. The default file margins, tab settings, and comment
formatting style are obtained from the user profile. Extended attribute information is saved in
all versions except the DOS version. Extended attributes may be turned off with the
EA command (see EA). Note that the Windows, AIX, and Linux versions save extended
attribute information into a file called XEAINFO.DTA in the directory specified by the
XPATH environment variable.

Marking Text

The X2 Editor supports three types of marks:

Line marks 1.
Block marks 2.
Word marks 3.

Line marks include the entire contents of the line, while block marks only include a
sub−section of a line. Block marks may be defined by specifying two corners of the block
with Alt−B, or by moving the cursor with the cursor movement keys while simultaneously
depressing the Shift key. Word marks are special cases of block marks. A word mark has the
special property that when copied or moved, if the target area is preceded with a space, an
extra space will be inserted with the marked word. When deleting a word mark, if the word is
preceded and succeeded with a space, an extra space will be removed.

Saved File Information 22

The default X2 Editor follows the E Editor standards for marking text, with one important
exception. If a mark already exists, it is removed in response to a request for a new mark,
instead of being extended as in the E Editor. For example, the first invocation of Alt−L will
define a single line mark. If Alt−L is pressed again with the cursor on another line, the line
mark is extended. Another press of Alt−L will cause the previous line mark to be removed,
and a single line mark to be started at the current cursor location. Options are available to
allow the mark keys to always extend a current mark. For example, to force the Alt−L key to
extend a line mark, define it to "MARK LINE EXTEND".

If a block or word mark exists on a single line and text is inserted or deleted before the mark,
the mark will be adjusted to stay on the same text.

Recorded Key Sequences

The X2 Editor provides a facility to record keystrokes for later playback. Every key pressed
will be remembered between two presses of the record key (Ctrl−R is the default key). The
key sequence can then be replayed with another key, which is Ctrl−T in the default
configuration. This is a very handy way to write little "on−the−fly" macros to do some kind
of repetitive task. Note that the keystroke buffer can hold a maximum of 255 keystrokes. If
this limit is hit before the recording is stopped, it will automatically be stopped and a
message will inform the user.

When playing back a key sequence, the entire sequence may not be completed. If the
sequence contains a Find command which is unsuccessful, it halts and displays a message.
This allows fast execution of a sequence by holding down the Ctrl−T key while still
providing some file protection by checking for deviations from expected response. The
recording can be re−activated by switching to another file, or by defining a new Find string
and executing a successful find.

The initial state of the command line and insert mode are remembered when starting a
keystroke recording. These values are restored to their original states as part of the playback
initialisation. A message "Remembering keys" is displayed in place of the PF line while
keystroke recording is active.

Automatic Binary File Detection

When X2 loads a file, it scans the first 80 bytes of the file for the null (hex 00) character. If it
finds a null character in the file, the file will initially be displayed in hex mode. You can
toggle the display back to text mode with the Alt−H key. See Hexadecimal Mode Screen
Layout for details about editor behaviour in hex mode.

The scan for binary files will be skipped if the /BIN command line option is used to specify
binary editing. Invoking The Editor describes the /BIN option.

Editor Settings

The following settings are provided. They can be tailored through user commands, and their

Recorded Key Sequences 23

initial values may be set through the user profile. In each case, issuing the command with no
parameters will cause its setting to be toggled, or the keywords ON and OFF will explicitly
set the command.

BROWSE◊
EA◊
HEX◊
INSMODE◊
LINEND◊
MSGMODE◊
SHADOW◊
SPAN◊
STATUS◊
SYNTAX◊
WRAP◊

BROWSE

When viewing files that have the Read Only attribute set, the editor will automatically
disable any changes to the file. This Browse Mode may be turned off, i.e. normal editing
mode is turned on, with the BROWSE OFF command.

EA

The X2 Editor will normally save file information in a file's Extended Attributes, so that the
edit view will be restored when next viewing the file. If this is not desired, setting EA
OFF will turn off this feature for the current file. The EA feature may be turned off for all
files on a disk with the user profile.

HEX

This command provides the default Alt−H key behaviour − it toggles the file view between
normal text view and binary or hex view.

INSMODE

InsMode is used to toggle insert/replace editing mode.

LINEND

This command toggles the linend setting. The linend character is used to separate multiple
commands; when LINEND is set to OFF, the linend character becomes part of the command.

MSGMODE

This command is mostly used in macros − turning MSGMODE OFF suppresses all
messages from the display, until MSGMODE is turned back ON.

BROWSE 24

SHADOW

The X2 Editor provides the ability to selectively exclude lines from the display, just like the
XEDIT editor does on VM. When lines are excluded, a "shadow" line can be displayed in
their place, to let you know how many lines have been excluded. The shadow line can be
suppressed by turning the SHADOW setting OFF. The default value for new files is ON. The
SHADOW setting is unique for each file in the ring.

SPAN

When searching for text, sometimes text will be split across multiple lines of the file. Setting
SPAN to ON will cause searches to span as many lines as necessary to find text. SPAN is
always ON when viewing a file in hex mode, and may be turned on with the SPAN
command for other files. It is OFF by default for text files since it causes search performance
degradation.

When a file is in text view and SPAN is in effect, lines will be treated as if they are separated
by a single space. In hex view, lines are concatenated directly together with no intervening
blank.

STATUS

Normally the status line is updated whenever the cursor is moved within a file. This slows
down the editor, particularly when using a slow PC. In these cases, performance gains can be
made by turning off the status line. Entering STATUS OFF will turn the status line off, and
STATUS ON can be used to restore it. The STATUS setting is global for every file in the
ring.

SYNTAX

If any expand_keyword lines are found in the profile, they will be converted to
expand_replace lines in response to the space character. This syntax assistance feature is not
always desired, so it can be turned on and off with the SYNTAX command. Entering
SYNTAX OFF will turn syntax assistance off, and SYNTAX ON will turn it back on. The
SYNTAX setting is unique for each file in the ring.

WRAP

For locating text, it is often useful to locate the text even if it is located above the current
position. If a search reaches the end of the file without finding the text, it will continue from
the top of file to the current position if the WRAP setting is ON (the default). Setting WRAP
to OFF will terminate an unsuccessful search at the bottom of the file. The WRAP setting is
unique for each file in the ring.

If WRAP is set ON and a search wraps around the top or bottom of the file, a message is
displayed informing the user. WRAP will also cause a backwards (towards top of file) search
to wrap around to the bottom of the file.

SHADOW 25

Tutorial
Screen Areas♦
Sample Edit Session

Basic Navigation◊
Marking◊
The Command Line◊
Hidden Lines◊

♦

This section is designed to show some of the capabilities and functionality of the X2 Editor.
If you are already familiar with the editor you may want to skip this section.

Screen Areas

The following figure shows a sample editor screen, when editing a small C source file.

Sample Editor Screen

This sample illustrates the main areas of the screen:

Filename
The filename in the sample is in the top left hand corner of the screen, and is
d:\x\demo.c. The filename is displayed in light red, which in the default
configuration is the mod_filename colour and means the file has been altered since it
was last saved.

Tutorial 26

Status Area
This area is located on the top line of the screen, on the right hand side. It begins
with the hexadecimal representation of the current character (a blank in the sample),
and is followed by the file column and row number, the total number of lines in the
file, the alteration count, and the insert/replace indicator.

Command Line
This is the line used to execute commands against the editor. It is only displayed
when active; when the cursor is in the data the command line is hidden by data. In
the sample screen the command line is active; it is the line immediately below the
status line which covers the entire screen width, and contains the command /char.

Command Stack
This is a window of previously executed commands which is displayed immediately
beneath the command line. Like the command line, it is only displayed when
necessary. A current line is displayed on the command stack window, which can be
moved up and down with the cursor keys. Selecting a command stack line will copy
the stack contents to the command line.

Data Area
The data area is the area of the screen used to display the file contents. All lines of
the data area may be modified by overtyping, as long as the file is not loaded in
Browse mode. The data area can contain lines with varying emphasis − this example
shows comments, quoted strings, keywords, alternate keywords, and error lines.

Comments
In the sample file, these are delimited by the normal C language strings of /* and */,
and are displayed in dark blue. There are two kinds of comments displayed: Block
comments, which span the entire line, and Inline comments which are on the same
line as some code.

Marked area
The marked text in the example is displayed with a light grey colour on a black
background. There are two main types of marks in X2: line marks and block marks.
Block marks are always rectangular and have borders at both lines and columns.
Line marks mark the entire line, so do not have column borders. The mark in the
example is a block mark.

Quoted strings
The string in quotes, "Hello World!" is highlighted in light blue colour. Note that the
mark overlaps part of the string, but does not affect the colour of the part of the
string that is not marked.

Keywords
X2 provides the ability to define a list of words that are to be highlighted in a
different colour. In the example, the keyword if has been highlighted in red.

Alt_keywords
There are two colours that may be used to highlight sets of keywords. The default
alternate keyword highlighting is yellow on a black background. The keyword
#include has been highlighted with alt_keyword emphasis.

Error line
The /ERR command line option instructs the editor to look for a .ERR file and insert
any compiler errors directly into the source file. These lines are read only, and
highlighted in magenta in the sample. The warning message displayed in the
example is error EDC0068 from the VisualAge C++ compiler.

Shadow cursor
When the command line is active, the current location in the data is shown with a
shadow cursor. The shadow cursor in the example is located on the line immediately

Tutorial 27

below the E in EDC0068.
Shadow line

When lines have been excluded from the display, their place is marked by a
shadow line which indicates how many lines have been hidden. Six lines have been
hidden in the example. The shadow line itself may be hidden with the
SHADOW command.

Help line
The last line on the screen is reserved for the help line. This line is overlaid by
warning or error messages when necessary, but normally it shows the settings for the
main function keys. If you press and hold any of the Ctrl, Alt, or Shift keys the help
text will change to show the function keys that are in effect with the various keys. If
CapsLock is active the help text will change to all upper case.

Sample Edit Session

This section takes you through a sample edit session. It shows you how you can use some of
the default keys to speed up editing tasks, and how to manipulate data with the default keys.
Text that you should type is highlighted in italics, while keys you should press are
highlighted in bold text.

Basic Navigation

If you have not already created a profile, do so now:

Open an OS/2 fullscreen or windowed prompt 1.
Change to the directory containing X.EXE, XPROFILE.EXE, and XPROFILE.DEF 2.
xprofile xprofile.def3.
set xpath=curdir, where curdir is the current directory 4.

Load a new C source file into the editor: x newfile.c. The message "New file" should be
displayed on the help line.

Create a main function. Type main and press the space bar. A skeleton main function should
be entered for you.

Define some variables: int sq, sum=0;

Duplicate the current line: Ctrl−K

Overtype the variable names with another variable called ctr

Insert a new line: Ctrl−Enter

Insert the following text:

 for (ctr = 0; ctr < 10; ++ctr)
 {
 sq = ctr * ctr;
 printf("The square of %i is %i\n", ctr, sq);
 sum += sq;

Sample Edit Session 28

 }

 printf("The total of the squares is %i\n", sum);

While adding the above text, you may need to move around the screen. The following keys
may be useful:

Enter
Move the cursor to the first non−blank of the next line

Left, right, up, down
Move the cursor one character in the specified direction

Ctrl−Left, Ctrl−Right
Move the cursor one word in the specified direction

PgUp, PgDn
Move the current line to the top or bottom of the screen, respectively

End
Move the cursor to the end of the current line

Ins
Toggle insert mode

Del
Delete the character at the cursor

Comment your code. Move to the first brace after the if statement, and position the cursor at
the end of the line. Add the following text:

 // Loop through the integers

When you move the cursor down past this line, you should see that the comment has been
converted from a quick comment to a regular C language comment, and has been aligned to
the right comment margin.

Save your file: F4. You should see the filename change from red to magenta, to indicate that
it has been saved successfully.

Marking

Now we want to move the calculation of the squares to a separate function. We'll do that by
adding a prototype before the definition of the main function. Move the cursor just above the
definition of the main function, and insert the following line:

 int CalcSquare (int num);

Mark the above line by pressing Alt−L with the cursor still on the line. You should see just
one line change to marked emphasis.

Move to the bottom of the file: Ctrl−End

Insert a few blank lines after the main function, and copy the marked line: Alt−C

Remove the trailing semi−colon and insert beginning and ending braces to define the
function. Move back to the calculation of the square from the previous exercise: sq = ctr *

Marking 29

ctr;. Duplicate this line with Ctrl−K, then overwrite the top copy to call the new CalcSquare
function: sq = CalcSquare(ctr);

Position the cursor over the next line and start another line mark with Alt−L. You will notice
that this extends the previous mark to the current location. You may remove the mark with
Alt−U, but an easier way is just to press Alt−L once again.

Extend the line mark to include the next line (printf) by moving the cursor down and pressing
Alt−L again.

Move back down to the bottom of the file and move the marked text to its new location.
Position the cursor over the line containing the open brace for the function definition, and
press Alt−M.

If you want to align the text in the new function, press Alt−< or Ctrl−F7 to move the text
left, as many times as necessary.

Insert a line at the beginning of the function to define a variable: int sq;

Insert a line at the end of the function to return the result: return sq;

Press F4 to save the file again

The Command Line

You may have noticed that the variable name ctr in the CalcSquare function does not match
the supplied parameter name num. This may be fixed with the Change command. Move the
cursor to the beginning of the CalcSquare function and press Esc to display the command
line. Enter: c /ctr/num/ and press the Enter key. Respond to the prompts by pressing Y until
you reach the end of file. If you are sure you want to change all occurrences of a given string
to the end of file, you can supply the * option to the change command.

While still on the command line, type save and press Enter to save the file to disk. The
default F4 key is set to call the Save command when pressed. Knowing the equivalent
command for a key is useful when writing macros or configuring the editor.

The command stack is displayed whenever the command line is active. This is a list of the
twenty most recently issued commands, sorted so the most recent is displayed first. Although
the command stack contains up to twenty items, you will only see a maximum of ten lines
when using the default configuration. You may scroll through the list with the cursor up and
cursor down keys. When you do so, you will notice that the current stack line is copied to the
command line for modification and/or execution.

Hidden Lines

While editing a large file, it is sometimes useful to see only a few lines and hide the rest. X2
provides this capability through keys and commands. While editing NEWFILE.C, press
Ctrl−X several times. You should see the current line replaced by a line that says "1 line(s)
not displayed". The number of lines displayed will increase every time you press Ctrl−X. The
"line(s) not displayed" line is called a Shadow line, and may be turned on and off with the

The Command Line 30

Shadow command or by pressing Ctrl−S. Press Ctrl−S twice to see the shadow line
disappear and reappear.

Press Ctrl−U to make sure all lines are displayed. Now move to the open brace in the for
statement in your main function. Press Ctrl−A (exclude area) to hide all the lines with the
same or greater indentation. Now move the cursor to the shadow line and press Ctrl−X. This
will show the five lines that were previously hidden.

There are times when you want to see where you have used a certain variable name, or
perhaps you want to see every location where you have called a given function. You can do
this with X2's All command. Go to the command line and enter all /printf/. You should see
just two remaining text lines and three shadow lines. Move to the first printf line and press
Alt−L to mark the line. Move to the second printf line and press Alt−L again to mark all the
lines between the two printf lines. Now edit a new file: Press F6 to display the command line
with the command Edit already displayed. Now enter a new filename: printfs.c. This will
create a second file in the edit ring. You can move back and forth between the two files with
the F11 and F12 keys. Press F12 to move back to newfile.c. Notice that the file is as you left
it, i.e. the hidden lines and mark are intact. Move back to printfs.c by pressing F12 again.
Press Alt−C to copy the mark. You will see that only the two lines were copied, even though
you marked hidden lines between the two visible lines. This allows you to easily copy just a
few lines from a large file. Most other commands only work on visible text, so if a line is
hidden it can safely be ignored when doing file operations that may destroy data.

Press F3 to quit printfs.c, and reply Y to the prompt confirming that you don't want to save
your changes. Press F4 to save newfile.c and you will notice that all your hidden lines are
now visible again.

The Command Line 31

Default Key Assignments
Unshifted Keys

Alphanumeric Keys◊
Function Keys◊
Special Character Keys◊
Special Keys◊

♦

Shifted Keys
Alphanumeric Keys◊
Function Keys◊
Special Character Keys◊

♦

Control Keys
Alphanumeric Keys◊
Function Keys◊
Special Character Keys◊

♦

Alternate Keys
Alphanumeric Keys◊
Function Keys◊
Special Character Keys◊

♦

This chapter describes the default settings for each key on the keyboard. Some of the defaults
can be changed through profile customisation (see Key Remapping). If no profile is used, or
the keys are not changed in the profile, these are the functions which apply to each key.

Unshifted Keys◊
Shifted Keys◊
Control Keys◊
Alternate Keys◊

Unshifted Keys

This section describes the functionality behind each key on the keyboard when no modifier
keys are depressed; i.e. none of the Shift, Ctrl, and Alt keys are active.

Alphanumeric Keys

The alphanumeric keys perform their normal function. Each key is used to enter the lower
case letter inscribed on the key cap.

Function Keys

F1
Browse help file. The default help file is X.HLP, but it can be customised in the user
profile. If the cursor is not on the command line, the help file will be loaded at the
Top Of File line. If the cursor is on the command line, the first word on the
command line will be used as a search parameter to scan the file. If the command
line is empty, the special keyword CMD will be used. No changes can be made to
the help file when it is loaded via this function.

F2

Default Key Assignments 32

Split/Join line. If the cursor is positioned after the end of the line, join the next line to
the current line at the cursor position. If the cursor is positioned over the body of the
line, split the line at the cursor position.

F3
Quit the current file. If changes have not been saved, a confirmation message will be
displayed − see QUIT Command for details.

F4
Save the current file to disk.

F5
Change the file name. A command will be displayed on the command line with the
current filename already filled in. Simply alter the name and press Enter to rename
the file.

F6
Edit a new file. Enter the new filename and press Enter.

F7
Page up, from the current cursor position. If the cursor is on the last screen row the
file is scrolled a full page. If the cursor is somewhere other than the last row, the
cursor row is moved to be the last row of the screen. Exactly the same as the Page
Up key definition.

F8
Page down, from the current cursor position. If the cursor is on the first screen row
the file is scrolled a full page. If the cursor is somewhere other than the first row, the
cursor row is moved to be the top row of the screen. Exactly the same as the Page
Down key definition.

F9
Undo changes to the file. If the current line has been changed, it will be restored to
its original state. Otherwise, the last modified line will be restored. Repeated
executions of this key will restore line changes until the file reaches its last saved
state.

F10
Redo changes to the file. This key will reverse a previous undo action, but only if the
undo key was the previous key pressed.

F11
Make the previous file in the ring the current file.

F12
Make the next file in the ring the current file.

Special Character Keys

Backspace
Destructive backspace. Deletes the previous character on the line, and moves the
cursor to the left one character. If the cursor is in column one of the line, this key
will join the current line to the end of the previous line.

Cursor Down
Moves the cursor down one row. The screen will scroll if necessary. If the cursor is
on the command line, retrieves the next oldest item from the command stack.

Cursor Left
Moves the cursor left one column. The screen will scroll if necessary. If in hex
display, the cursor will stay in the hexadecimal or text portion of the screen.

Cursor Right

Special Character Keys 33

Moves the cursor right one column. The screen will scroll if necessary. If in hex
display, the cursor will stay in the hexadecimal or text portion of the screen.

Cursor Up
Moves the cursor up one row. The screen will scroll if necessary. If the cursor is on
the command line, retrieves the next newest item from the command stack.

Delete
Delete the character at the current position.

End
Move the cursor to the end of the current line. If the cursor is already at the end of
the line, it will be moved to the end of the next line in the file.

Enter
Move the cursor to the beginning of the next file line. If the next line is blank, the
cursor is positioned so it will be directly beneath the beginning of the previous
non−blank line. If the cursor is on the command line, executes the command
specified on the command line. If the command line is empty, moves the cursor to
the topmost visible file line on the screen.

Esc
Toggle the command line. If the cursor is in the file, the command line will be
displayed and the cursor positioned on the command line. If the command line is
active, it will be hidden and the cursor restored to its previous file position.

Home
Move the cursor to column 1 of the current line. If the cursor is already in column 1,
move to column 1 of the previous line.

Insert
Toggle insert mode. Characters typed when insert mode is on will be inserted into
the file. When insert mode is off, they will replace the previous line characters. Insert
mode is indicated with "Ins" on the status line, and by a block cursor. Replace mode
is indicated with "Rep" on the status line and by a thin underline cursor. If the
current file is being browsed, replace mode is indicated by the text "Brw" on the
status line.

Page Down
Page down, from the current cursor position. If the cursor is on the first screen row
the file is scrolled a full page. If the cursor is somewhere other than the first row, the
cursor row is moved to be the top row of the screen. Exactly the same as the F8 key
definition.

Page Up
Page up, from the current cursor position. If the cursor is on the last screen row the
file is scrolled a full page. If the cursor is somewhere other than the last row, the
cursor row is moved to be the last row of the screen. Exactly the same as the F7 key
definition.

Tab
Move the cursor to the next tab position on the line. If insert mode is on, the text will
also be moved to the next tab position. This provides a fast way to move text to the
right.

If the cursor is on the command line, the tab key provides a filename completion
function. Typing the first few characters of a filename and pressing Tab causes the
remainder of the filename to be filled in and the cursor positioned to the end of the
command line. If there are multiple matches to the supplied string, a popup window
will show the matching files and directories. The number of matches that will trigger
this window is configurable through the user profile; see Filename Completion

Special Character Keys 34

Threshold. If filename completion causes a window to be displayed, the supplied text
is drawn with normal emphasis, while the possible completions have bold emphasis.
Typing the first letter of any completion will filter the display to just the possible
completions that match that character.

Special Keys

Caps Lock
This key toggles upper case mode on the keyboard as normal. The function key
display line at the bottom of the screen will reflect this key. When Caps Lock is on,
all text at the bottom of the screen will be displayed in upper case. When Caps Lock
is off, the function key text reverts to its normal, mixed case format.

Num Lock
This key provides its normal function; i.e. the keys on the numeric keypad will enter
their numeric values.

Print Screen
This key provides its normal function; i.e. the current screen contents will be printed
to the local printer.

Scroll Lock
When Scroll Lock is on, the cursor movement keys work differently than normal.
Instead of moving the cursor on the fixed screen, the screen scrolls and the cursor
stays in the same position on the screen. Scroll Lock only works when the cursor is
in the file. If the cursor is on the command line, the Scroll Lock key has no effect on
cursor movement.

Shifted Keys

This section defines all keys which are active when the Shift key is also depressed. To
activate these functions you must press the Shift key and the target key at the same time. If
the Shift key is depressed and held down for a couple of seconds (the exact time varies
according to the speed of the local PC), the function key display line at the bottom of the
screen will change to show the settings for the function keys when combined with the shift
key. Releasing the shift key will immediately change the function display line to its normal
text.

Alphanumeric Keys

The alphanumeric keys perform their normal function. Each key is used to enter the upper
case letter inscribed on the key cap.

Function Keys

Shift−F1
Scroll the file left one column. The cursor does not move on the screen, but does
move to the next file column.

Shift−F2
Scroll the file right one column. The cursor does not move on the screen, but does
move to the previous file column.

Shift−F3

Special Keys 35

Scroll the file up one row. The cursor does not move on the screen, but does move to
the next file row.

Shift−F4
Scroll the file down one row. The cursor does not move on the screen, but does move
to the previous file row.

Shift−F5
Centre the current row on the screen.

Shift−F6
Undefined

Shift−F7
Undefined

Shift−F8
Undefined

Shift−F9
Undefined

Shift−F10
Undefined

Shift−F11
Undefined

Shift−F12
Undefined

Special Character Keys

Shift−Backspace
Destructive backspace. Deletes the previous character on the line, and moves the
cursor to the left one character. If the cursor is in column one of the line, this key
will join the current line to the end of the previous line.

Shift−Cursor Down
CUA Marking. Extends the current mark (if any) down one row.

Shift−Cursor Left
CUA Marking. Extends the current mark (if any) to the left one column.

Shift−Cursor Right
CUA Marking. Extends the current mark (if any) to the right one column.

Shift−Cursor Up
CUA Marking. Extends the current mark (if any) up one row.

Shift−Delete
Undefined

Shift−End
Mark the current line from the cursor position to the end of the line. The cursor is
moved to the end of the line. Nothing is changed if the cursor is beyond the end of
the line.

Shift−Enter
Move the cursor to the beginning of the next file line. If the next line is blank, the
cursor is positioned so it will be directly beneath the beginning of the previous
non−blank line.

Shift−Esc
Toggle the command line. If the cursor is in the file, the command line will be
displayed and the cursor positioned on the command line. If the command line is
active, it will be hidden and the cursor restored to its previous file position.

Shift−Home

Special Character Keys 36

Mark the current line from the cursor position to column 1. The cursor is moved to
column 1 of the line. Nothing is changed if the cursor is already in column 1.

Shift−Insert
Undefined

Shift−Page Down
Undefined

Shift−Page Up
Undefined

Shift−Tab
Move backwards to the previous tab position.

Control Keys

This section defines all keys which are active when the Control key is also depressed. To
activate these functions you must press the Ctrl key and the target key at the same time. If the
Control key is depressed and held down for a couple of seconds (the exact time varies
according to the speed of the local PC), the function key display line at the bottom of the
screen will change to show the settings for the function keys when combined with the
Control key. Releasing the Control key will immediately change the function display line to
its normal text.

Alphanumeric Keys

Ctrl−A
Hide area based on indentation. Starting with the current line, all succeeding lines
which are indented the same or more will be excluded from the display. Blank lines
are included in the area to be excluded.

Ctrl−B
Set bookmark position. If multiple bookmarks are available for this file, a window
showing all the bookmarks is displayed. Selecting one and pressing enter will
overwrite it with the current cursor position. The first bookmark position is
initialised to the starting cursor position when the file is loaded.

Ctrl−C
Toggle comment formatting for the current file. This indicates how in−line
comments will be aligned for files which have active comment indicators. The order
rotates through:

Right alignment 1.
Left alignment 2.
No comment formatting 3.

Ctrl−D
Delete the current word from the cursor position to the beginning of the next word.

Ctrl−E
Erase the current line from the current cursor position to the end of the line.

Ctrl−F
Repeat previous find command

Ctrl−G
Go to saved bookmark position. If multiple bookmarks are available for this file, a
window showing all the bookmarks is displayed. Selecting one and pressing enter
will move the cursor to the bookmark line and column. The bookmark remains
active, but the previous cursor position is remembered in an alternate bookmark. If

Control Keys 37

the cursor is already on the target bookmark, it is moved to the alternate bookmark
instead. The alternate bookmark is also set when the cursor is moved by the Ctrl−F11
function (see Code Functions List).

Ctrl−H
Undefined

Ctrl−I
Undefined

Ctrl−J
Insert a new blank line, and move the cursor to the new line.

Ctrl−K
Duplicate the current line. A copy of the current line is inserted below the current
line.

Ctrl−L
Copy the contents of the current file line to the command line. If a block mark exists
on the current line, just that portion of the line will be copied. If the command line is
not currently active, it will be activated.

Ctrl−M
Undefined

Ctrl−N
Find next compiler error comment. The cursor will be positioned on the next error
line in the file. If a column is available in the error line, the cursor will be positioned
to that column in the file. Compiler Errors contains more detail about compiler error
handling.

Ctrl−O
Obliterate compiler errors. This key will remove all compiler error comments from
the current file. They will automatically be removed if the file is saved. Compiler
Errors contains more detail about compiler error handling.

Ctrl−P
Open (edit) the file named on the current line. See Customising the OpenFile
Function for information on setting up the profile to correctly open files.

Ctrl−Q
Undefined

Ctrl−R
Start/end recording keystrokes for later playback. See Recorded Key Sequences for
details.

Ctrl−S
Toggle the SHADOW setting for the current file. If SHADOW is ON, it will be
turned OFF, and vice versa.

Ctrl−T
Re−play recorded keystroke sequence. If recording is still active, the current
recording is completed before it is re−played. See Recorded Key Sequences for
details.

Ctrl−U
Unexclude all. Shows every line in the file.

Ctrl−V
Repeat the last find command, but reverse the direction. This will not affect the find
command for subsequent use with Ctrl−F.

Ctrl−W
Find the word at the cursor position. For details on the Find Word algorithm, see
FIND_WORD.

Ctrl−X

Control Keys 38

Exclude/include file lines. If the current file line is not a shadow line, it will be
excluded from the display. If the current file line is a shadow line, all the lines
represented by that shadow line will be restored to the display.

Ctrl−Y
Bracket/GML tag matching. Match Command contains information about this
function.

Ctrl−Z
Undefined

Function Keys

Ctrl−F1
Undefined

Ctrl−F2
Undefined

Ctrl−F3
Convert all text in the marked area to upper case.

Ctrl−F4
Convert all text in the marked area to lower case.

Ctrl−F5
Convert all text in the marked area to mixed case. All text will be in lower case,
except the first character of each word, which is upper case.

Ctrl−F6
Undefined

Ctrl−F7
Shift marked text left one column. Text at the beginning of the mark will be lost.
Text to the right of a block mark is also shifted to the left.

Ctrl−F8
Shift marked text right one column. Blanks are inserted at the leftmost edge of the
mark. Text to the right of a block mark is also shifted to the right.

Ctrl−F9
Enter the current date into the file, in the format YY/MM/DD.

Ctrl−F10
Rotate the case of the current word, through UPPER, Mixed, and lower. A word is
considered to be made up of any of the characters a−z, 0−9, and the underscore (_).
Any other characters delimit the beginning and end of the word. If the cursor is on a
non−alphanumeric character, the case of the previous word will be changed.

Ctrl−F11
Popup Code Functions Window

Ctrl−F12
Popup Ring Window

Special Character Keys

Ctrl−Backspace
Delete the current line from the file.

Ctrl−Cursor Down
Convert the character at the cursor position to lower case, and move the cursor one
character to the right.

Ctrl−Cursor Left

Function Keys 39

Move the cursor to the beginning of the previous blank−delimited word. If the cursor
is at the beginning of the line, the cursor will be moved to the last word on the
previous line.

Ctrl−Cursor Right
Move the cursor to the beginning of the next blank−delimited word. If the cursor is
past the end of the line, it will be positioned beneath the next word on the previous
line. If the previous line is also blank beyond the cursor position, the cursor will be
moved to the beginning of the next line.

Ctrl−Cursor Up
Convert the character at the cursor position to upper case, and move the cursor one
character to the right.

Ctrl−Delete
Delete the current word from the cursor position to the beginning of the next word.

Ctrl−End
Move to the bottom line of the file

Ctrl−Enter
Insert a new blank line, and move the cursor to the new line.

Ctrl−Esc
Under OS/2, this key is used to pop up the desktop window list.

Ctrl−Home
Move to the top line of the file

Ctrl−Insert
Undefined

Ctrl−Page Down
Move to the bottom line visible on the screen

Ctrl−Page Up
Move to the top line visible on the screen

Ctrl−Tab
Undefined

Ctrl−[
Undefined

Ctrl−]
Undefined

Alternate Keys

This section defines all keys which are active when the Alternate key is also depressed. To
activate these functions you must press the Alt key and the target key at the same time. If the
Alt key is depressed and held down for a couple of seconds (the exact time varies according
to the speed of the local PC), the function key display line at the bottom of the screen will
change to show the settings for the function keys when combined with the Alt key. Releasing
the Alt key will immediately change the function display line to its normal text.

Alphanumeric Keys

Alt−A
Mark area based on indentation. Starting with the current line, all succeeding lines
which are indented the same or more will be marked. The mark will be a line mark
and will remove any previous mark. Blank lines are included in the new mark. If the

Alternate Keys 40

current line begins in column one, the current function will be marked instead of the
rest of the file.

Alt−B
Mark a block of text. If there is a single character already marked, it will be extended
to the current cursor position. Otherwise, a block mark will be started at the current
position.

Alt−C
Copy marked text to the current location. If lines are marked, they will be inserted
below the current line. If a block of text is marked, it will be inserted at the current
position. The mark will move with the text, so the newly inserted text will be
marked.

Alt−D
Delete marked text from the file.

Alt−E
Move the cursor to the end of the marked area. For line marks, this key will move the
cursor to the last marked line, and the column will remain constant. For block marks,
the cursor will move to the last marked line and the last marked column.

Alt−F
Fill marked area. The marked area will be filled with the character entered in
response to the prompt. If the marked area is a line mark, each line will be filled with
characters between the block formatting margins.

Alt−G
Undefined

Alt−H
Toggle between hexadecimal mode and text view.

Alt−I
Input an ascending series of integers in the currently marked column. The sequence
starts at the top marked line, in the current column. If there is already an integer
there, it will be used as the starting value. Otherwise, the sequence starts with the
number 1. The output numbers will be padded with blanks so they are right aligned.

Alt−J
Join the current line with the following line. If the cursor is beyond the end of the
line, the join occurs at the cursor position. Otherwise, the two lines are joined with a
single space between them.

Alt−K
Undefined

Alt−L
Line mark. If a single line is already marked in the current file, the mark is extended
to include the current line. Otherwise, any previous mark is cleared and the current
line is marked.

Alt−M
Move the marked area to the current position. If lines are marked, they will be
inserted below the current line. If a block of text is marked, it will be inserted at the
current position. The mark will move with the text, so the newly inserted text will be
marked. The previously marked text is deleted from the file.

Alt−N
Enter the current filename at the cursor position.

Alt−O
Overlay mark. If lines are marked, they are copied to the current position in place of
any existing lines. If a block is marked, it is copied over top of the current text. The
mark is moved to the new position.

Alternate Keys 41

Alt−P
Paragraph re−format. For details, see REFORMAT.

Alt−Q
Edit compiler error file. The results from a compile must be piped to a file named
fn.ERR. When editing fn.ext, pressing this key will cause the error file to be loaded
and comments inserted at each line which caused an error. The error comment lines
will automatically be removed if the file is later saved. See Compiler Errors for
further details regarding compiler error handling in the X2 Editor.

Alt−R
Remove leading blanks from marked area. All text will be aligned to the left edge of
the mark. No characters will be removed from any line except blanks. The text to the
left of the mark will remain unchanged.

Alt−S
Split the line at the cursor position. The text after the current column will be inserted
as the next line, so it lines up with the beginning of the current line. If the current
line contains a left parenthesis "(" character, the new text will line up beneath the
parenthesis.

Alt−T
Centre text between two comment markers. If no comment markers are found on the
current line, any text on the line is centred between the left and right comment
formatting margins. If a block mark exists on the current line, the text within the
mark will be centred upon the mark.

Alt−U
Unmark, or cancel any current marked area.

Alt−V
Mark a vertical column of data. Starting from the current position, this key will cause
a block mark to extend upwards and downwards for as long as a non−blank character
is found.

Alt−W
Mark the current word. A block mark is started at the beginning of the word pointed
at by the cursor, which extends to the end of the word plus one space. If the cursor is
beyond the end of the line, the last word on the line will be marked. If the cursor is
pointing at a space between words, the following word will be marked. When
looking for the beginning of a word, the editor scans backwards from the cursor
position to find the first character which is alphanumeric or an underscore. Any
previous mark is removed. See Marking Text for additional information on word
marks.

Alt−X
Escape to enter characters in ASCII mode.

Alt−Y
Move the cursor to the beginning of the marked area. For line marks, this key will
move the cursor to the first marked line, and the column will remain constant. For
block marks, the cursor will move to the first marked line and the first marked
column.

Alt−Z
Mark the comment on the current line, or if there is no comment, mark from the
current cursor position to the end of the line. If the cursor is already beyond the end
of line and no comment is found on the line, this key does not alter the current mark.

Alternate Keys 42

Function Keys

Alt−F1
Undefined

Alt−F2
Flicker compare. With two files in the ring, this key will position the cursor at the
next lines which are different. If the current lines are already different, this key acts
as a toggle between the two files.

Alt−F3
Re−synchronise flicker compare. Starting with two different lines in two files, this
key will position the cursor at the next lines which are the same between the two
files. If the current lines are already the same, this key acts as a toggle between the
two files.

Alt−F4
Merge changes. When positioned at two different lines in two files, this key will take
all the changes from the current file and apply them to the other file in the ring, up
until two lines which are the same. Useful after using Alt−F2 to verify that there are
changes between two files.

Alt−F5
Undefined

Alt−F6
Undefined

Alt−F7
Undefined

Alt−F8
Undefined

Alt−F9
Enter the current date into the file, in the format month dd, yyyy.

Alt−F10
Undefined

Alt−F11
Undefined

Alt−F12
Undefined

Special Character Keys

Alt−Backspace
Undefined

Alt−Cursor Down
Move the cursor to the last line showing on the screen.

Alt−Cursor Left
Move the cursor to the beginning of the previous symbol, where a symbol consists
only of alphanumeric characters plus the underscore (_) character. If the cursor is at
the beginning of the line, the cursor will be moved to the last symbol on the previous
line.

Alt−Cursor Right
Move the cursor to the beginning of the next symbol, where a symbol consists only
of alphanumeric characters plus the underscore (_) character. If the cursor is past the
end of the line, it will be positioned beneath the next symbol on the previous line. If

Function Keys 43

the previous line is also blank beyond the cursor position, the cursor will be moved
to the beginning of the next line.

Alt−Cursor Up
Move the cursor to the top line showing on the screen.

Alt−Delete
Undefined

Alt−End
Move the cursor to the next blank−delimited paragraph in the file.

Alt−Enter
Toggle the command line. If the cursor is in the file, the command line will be
displayed and the cursor positioned on the command line. If the command line is
active, it will be hidden and the cursor restored to its previous file position.

Alt−Esc
Under OS/2, this key is used to cycle through windows on the desktop.

Alt−Home
Move the cursor to the previous blank−delimited paragraph in the file.

Alt−Insert
Undefined

Alt−Page Down
Move the cursor to the next function in the file. See Cursor Positioning for details.

Alt−Page Up
Move the cursor to the previous function in the file. See Cursor Positioning for
details.

Alt−Tab
Undefined

Alt−1
Key in a lower left box character (À)

Alt−2
Key in a bottom tee box character (Á)

Alt−3
Key in a lower right box character (Ù)

Alt−4
Key in a left tee box character (Ã)

Alt−5
Key in an intersection box character (Å)

Alt−6
Key in a right tee box character (´)

Alt−7
Insert a comment line containing just spaces. If the file is new and empty, the first
line will be replaced by the comment line. Otherwise, the line is added just below the
cursor line.

Alt−8
Insert a comment containing a solid line of asterisks. If the file is new and empty, the
first line will be replaced by the comment line. Otherwise, the line is added just
below the cursor line.

Alt−9
Key in an upper right box character (¿)

Alt−0
Insert a line containing the text "#if 0"

Alt−Pad+

Function Keys 44

Add a marked column of numbers. The numbers can contain leading and trailing
spaces, decimal points, and plus and minus signs. Any other characters will cause the
item to be ignored.

Alt−,
Shift marked text left one column. Text at the beginning of the mark will be lost.
Text to the right of a block mark is also shifted to the left.

Alt−−
Key in a horizontal box character (Ä)

Alt−.
Shift marked text right one column. Blanks are inserted at the leftmost edge of the
mark. Text to the right of a block mark is also shifted to the right.

Alt−=
Expand the current word from previously entered text

Alt−[
Undefined

Alt−\
Key in a vertical box character (³)

Alt−]
Undefined

Function Keys 45

User Profile
Creating The User Profile♦
Comments♦
Key Remapping

User Profile Key Remap◊
♦

Colour Remapping
Colour Remapping◊
X−Windows Colour Remapping◊

♦

Strings♦
Synonyms♦
Bracket Matching Characters♦
Initial Editor Settings

Newline Character◊
Cursor Size◊
Saving Editor Information◊
Enter Key Behaviour◊
Insert Mode◊
Linend Setting◊
Popup Window Scrolling◊
Quick Bookmark Setting◊
Status Line◊
Automatic Bookmarks◊
Multiple Bookmarks◊
Command Line Location◊
Command Stack Window Size◊
Default Extension◊
Default List◊
Escape Character◊
Filename Completion Threshold◊
Linend Character◊
Null Character◊
OpenFile Paths◊
Quit Response When File Modified◊
Right Alt (AltGr) Key◊
Shell Prompt String◊
Beep Behaviour◊
X−Windows Font◊

♦

Disk Specific Customisation
User Profile Disk Customisation◊

♦

File Extension Specific Customisation
Default Extension◊
Inline Comment Formatting Control◊
Code Functions List◊
Syntax Expansion◊
Conditional Strings◊
Customising the OpenFile Function◊
Style Formatting◊
User Profile Extension Customisation◊

♦

User Profile 46

X2 allows limited tailoring through the use of a user profile. The user profile is used to
customise the screen colours and some keys. It is also used to set file extension−specific
parameters such as comment formatting and syntax expansion keywords.

Creating The User Profile

It is strongly recommended that you do not modify the default profile, xprofile.def. The
default profile is frequently updated, and shipped with each new release of the editor. If you
make changes, you'll have to re−do all your changes with each new release. A much better
way is to create a new profile, say xprofile.add, that contains only overrides and new
definitions. There is no need to copy definitions from xprofile.def unless you want to change
them, and then you only need to copy the pieces you want to change.

A user profile can have any name. Only those lines beginning with a recognised keyword
will be processed. The profile is processed with the XPROFILE command, with the
following syntax:

 XPROFILE profname <prof2 <prof3...>>

where profname is the name of the profile file, and prof2 and prof3 are optional additional
profiles. Profname will default to XPROFILE.DEF in the current directory if it is not
specified. Each profile input file will override the settings from the previous profile.

If successful, a file called X.PRO will be created in the current directory. Copy this file to
your XPATH and it will be read whenever you start the editor. Note that if the editor cannot
find X.PRO when it starts, it will look for X.PRO in the same directory from which X.EXE
was started. This allows you to place a default profile with X.EXE on a common disk in a
group environment, and still allow people to override the default profile by placing one in
their XPATH directory.

The above instructions apply to the OS/2 version of the editor. Under other operating systems
the command syntax is the same, but the profile generation program name differs, as does the
output profile name. The following table details these differences.

Operating System Profiler Profile Name

OS/2 XPROFILE.EXE X.PRO

Windows NT/95 XPROFWNT.EXE XW32.PRO

DOS XPROFDOS.EXE XDOS.PRO

AIX xprofile XUNIX.PRO

Linux xprofile XUNIX.PRO

Solaris xprofile XUNIX.PRO

The profile name may be changed in two ways. An environment variable called XPRO may
be set to the desired profile name, or the /P command line option may be used to temporarily
override the profile. Under some Unix systems the environment variable XPATH is used by
the X−Windows system itself; in such cases the name X2PATH should be used in place of

Creating The User Profile 47

XPATH.

Comments

Comments may be included in the user profile input file. Comments either start with an
asterisk (*) character in column one, or use the sequence /* and */ to delimit the beginning
and end of a comment. The latter sequence may be used to denote inline comments in any
profile definition line.

Key Remapping

Keys can be remapped with the following sequence:

 KEY keyname = function

where:

keyname
is the name of the key to be remapped

function
is the name of the function to be assigned to that key

keyname is converted to upper case before being scanned, therefore it can be entered in
mixed case as convenient. Note that keys may be defined globally, or for a specific file
pattern. If a file extension has been specified, the key will be defined only for that file type;
otherwise, it will be global to all files. User Profile Key Remap describes the keys which can
be remapped. Any command may be assigned directly to a key.

User Profile Key Remap

Key Profile Name Default Function

F1 F1 Help

F2 F2 SplitJoin

F3 F3 Quit

F4 F4 Save

F5 F5 Rename

F6 F6 "CmdText EDIT "

F7 F7 PageUp

F8 F8 PageDown

F9 F9 Undo

F10 F10 Redo

Comments 48

F11 F11 Previous_File

F12 F12 Next_File

Backspc Backspace Backspace

Delete Delete DelChar

End End Cursor EOL

Enter Enter Cursor NextLine

Home Home Cursor Col1

Pad + PadPlus Keyin +

Page Down PgDn PageDown

Page Up PgUp PageUp

Tab Tab Tab

Shift−F1 s−F1 Scroll Left

Shift−F2 s−F2 Scroll Right

Shift−F3 s−F3 Scroll Up

Shift−F4 s−F4 Scroll Down

Shift−F5 s−F5 CentreLine

Shift−F6 s−F6 Nop

Shift−F7 s−F7 Nop

Shift−F8 s−F8 Nop

Shift−F9 s−F9 Nop

Shift−F10 s−F10 Nop

Shift−F11 s−F11 Nop

Shift−F12 s−F12 Nop

Shift−Del s−Del Nop

Shift−Down s−Down Mark Extend Down

Shift−End s−End Mark Eol

Shift−Home s−Home Mark Col1

Shift−Ins s−Ins Nop

Shift−Left s−Left Mark Extend Left

Shift−Page Down s−PgDn Nop

Shift−Page Up s−PgUp Nop

Shift−Right s−Right Mark Extend Right

Shift−Tab BackTab BackTab

Shift−Up s−Up Mark Extend Up

Ctrl−A c−A Exclude Area

Comments 49

Ctrl−B c−B Bookmark Set

Ctrl−C c−C Comment_style

Ctrl−D c−D DelWord

Ctrl−E c−E EraseEOL

Ctrl−F c−F Repeat_find

Ctrl−G c−G Bookmark Go

Ctrl−H c−H Nop

Ctrl−I c−I Nop

Ctrl−K c−K CopyLine

Ctrl−L c−L CopyToCmd

Ctrl−M c−M Nop

Ctrl−N c−N Errors Next

Ctrl−O c−O Errors Remove

Ctrl−P c−P Openfile

Ctrl−Q c−Q Nop

Ctrl−R c−R Keys_record

Ctrl−S c−S Shadow

Ctrl−T c−T Keys_play

Ctrl−U c−U All

Ctrl−V c−V Reverse_find

Ctrl−W c−W Find_word

Ctrl−X c−X Exclude Toggle

Ctrl−Y c−Y Match

Ctrl−Z c−Z Nop

Ctrl−F1 c−F1 Nop

Ctrl−F2 c−F2 Nop

Ctrl−F3 c−F3 Mark Upper

Ctrl−F4 c−F4 Mark Lower

Ctrl−F5 c−F5 Mark Mixed

Ctrl−F6 c−F6 Nop

Ctrl−F7 c−F7 Mark Shift Left

Ctrl−F8 c−F8 Mark Shift Right

Ctrl−F9 c−F9 Date Long

Ctrl−F10 c−F10 CaseWord

Ctrl−F11 c−F11 FuncWin

Comments 50

Ctrl−F12 c−F12 RingWin

Ctrl−Del c−Del DelWord

Ctrl−Down c−Down CaseChar Lower

Ctrl−End c−End Bottom

Ctrl−Enter c−Enter Input

Ctrl−Home c−Home Top

Ctrl−Ins c−Ins Nop

Ctrl−Left c−Left Previous_word

Ctrl−Page Down c−PgDn BottomScreen

Ctrl−Page Up c−PgUp TopScreen

Ctrl−Right c−Right Next_word

Ctrl−Tab c−Tab Nop

Ctrl−Up c−Up CaseChar Upper

Ctrl−[c−[Nop

Ctrl−] c−] Nop

Alt−A a−A Mark Area

Alt−B a−B Mark Block

Alt−C a−C Mark Copy

Alt−D a−D Mark Delete

Alt−E a−E Cursor EndMark

Alt−F a−F Mark Fill

Alt−G a−G Nop

Alt−H a−H Hex

Alt−I a−I Mark Integers

Alt−J a−J Join

Alt−K a−K Nop

Alt−L a−L Mark Line

Alt−M a−M Mark Move

Alt−N a−N Keyin_name

Alt−O a−O Mark Overlay

Alt−P a−P Reformat

Alt−Q a−Q Errors Show

Alt−R a−R Mark Align

Alt−S a−S Split

Alt−T a−T CentreText

Comments 51

Alt−U a−U Mark Clear

Alt−V a−V Mark Vertical

Alt−W a−W Mark Word

Alt−X a−X ASCII

Alt−Y a−Y Cursor BegMark

Alt−Z a−Z Mark EOL

Alt−1 a−1 Keyin À

Alt−2 a−2 Keyin Á

Alt−3 a−3 Keyin Ù

Alt−4 a−4 Keyin Ã

Alt−5 a−5 Keyin Å

Alt−6 a−6 Keyin ´

Alt−7 a−7 Commentline Empty

Alt−8 a−8 Commentline Full

Alt−9 a−9 Keyin ¿

Alt−0 a−0 Input #if 0

Alt−F1 a−F1 Nop

Alt−F2 a−F2 Compare

Alt−F3 a−F3 Compare Sync

Alt−F4 a−F4 Compare Merge

Alt−F5 a−F5 Nop

Alt−F6 a−F6 Nop

Alt−F7 a−F7 Nop

Alt−F8 a−F8 Nop

Alt−F9 a−F9 Date Ordered

Alt−F10 a−F10 Nop

Alt−F11 a−F11 Nop

Alt−F12 a−F12 Nop

Alt−− a−− Keyin Ä

Alt−= a−= Expand

Alt−Down a−Down BottomScreen

Alt−End a−End Next_para

Alt−Home a−Home Previous_para

Alt−Left a−Left Previous_sym

Alt−Right a−Right Next_sym

Comments 52

Alt−Up a−Up TopScreen

Alt−[a−[Nop

Alt−\ a−\ Keyin ³

Alt−] a−] Nop

Colour Remapping

The profile may be used to change the colours used to display practically every area of the
X2 Editor screen. Under Unix systems the base X−Windows colours themselves may be
remapped to different values.

Colour Remapping

Screen colour areas can be remapped with the following sequence:

 COLOUR areaname = fg ON bg

where:

areaname
is the name of the screen area to be remapped

fg
is the foreground colour to be used for this area

bg
is the background colour to be used for this area

The available colours for use in either the foreground or the background are Black, Blue,
Brown, Cyan, Dark Grey*, Green, Light Blue*, Light Cyan*, Light Green*, Light Grey,
Light Magenta*, Light Red*, Magenta, Red, White*, and Yellow*. The special foreground
colour Reverse is only applicable when areaname is equal to popup_cursor or csr_line, and
indicates that the popup window cursor should be displayed using the reverse of the normal
colour attributes for the window. The table below defines the various screen areas and their
default colours.

* The colours marked with an asterisk may cause a blinking display when switching to
OS/2's window list and back, if they are assigned as a foreground colour. If this occurs, the
blinking may be removed by issuing the REFRESH command.

Area Name Meaning
Default

Foreground
Default

Background

alt_keywords
The colour used to
highlight alternate user
keywords

Yellow Black

browse_data
File text for a read only
file

Green Light Grey

Colour Remapping 53

browse_ind Ins/Brw indicator text
for a read only file

Blue Light Grey

command Popup command line Blue Cyan

command_stack Popup command stack Blue Cyan

comment

The colour used to
distinguish comments
from normal text or
code

Blue Light Grey

csr_line

The colour used to
display regular data on
the current cursor line.
If set to Reverse, the
normal colours of the
cursor line will be
reversed. If explicitly
set to a colour, only the
data area of the current
line will be changed.

Black Light Grey

data Normal text data Black Light Grey

error_line
Compiler error
information lines

Magenta Light Grey

filename

The colour used to
display the filename on
the left of the top screen
row, when the file has
not been changed.

Magenta Light Grey

function_name

The colour used to
display the name of a
function that has been
recognised through the
function_id profile
setting.

Magenta Light Grey

highlight
The colour used to
highlight the results of a
Find command

Yellow Magenta

keywords
The colour used to
highlight user keywords

Red Light Grey

mark Marked area Light Grey Black

message

The colour used for
messages which will be
written over the help
line from time to time

White Light Grey

mod_filename The colour used to
display the filename on

Light Red Light Grey

Colour Remapping 54

the left of the top screen
row, when the file has
been altered.

pfline
The PF display line on
the bottom row of the
screen

Black Light Grey

popup_cursor

The colour used to
highlight the cursor line
when a popup window
is active. The special
value Reverse indicates
that the normal
uncursored colour
scheme will be reversed
to highlight the cursor.

Reverse

prompt
The colour used to
display prompt
windows.

Yellow Black

prompt_input

The colour used to
display the input text
area of prompt
windows.

Black Yellow

protected

The colour used to
display protected fields
(see LINEFIELDS for
details on setting
protected fields).

Green Light Grey

quotes

The colour used to
highlight strings
delimited with double
quotation marks (").
Only the first quoted
string on a line will be
highlighted.

Brown Light Grey

shadow
The shadow line used to
indicate one or more
hidden file lines

Light Blue Light Grey

shadow_cursor
Cursor position in data
area when cursor is on
the command line

Black Cyan

status Status area on top row
of the screen. Contains
indicators for the cursor
row and column
number, file size,
insert/replace status,

Blue Light Grey

Colour Remapping 55

and hexadecimal value
of the current character.

tofeof
The colour used to draw
the Top of File and End
of File lines

Black Light Grey

window_bold

Bold popup window
lines. Used for lines
highlighted with
bold emphasis (see
WINLINE).

Black Cyan

window_data

Normal popup window
lines. Used for lines
highlighted with
text emphasis (see
WINLINE).

Blue Cyan

window_ emphasis

Emphasised popup
window lines. Used for
showing modified files
in the Ring popup
window, and for
emphasised lines (see
WINLINE).

Light Red Cyan

window_title

Popup window title
line. Used for
displaying the popup
window title line. (see
WINDOW).

Yellow Magenta

xwindows_cursor

The colour used to draw
the cursor under the
X−Windows versions.
This colour is only
applicable to the
X−Windows versions
on Linux and AIX.
Only the foreground
colour is used, even
though both foreground
and background colours
must be specified.

Red Light Grey

X−Windows Colour Remapping

On Unix X−Windows systems, the mappings of the base screen colours may be changed
from their defaults.

 X−COLOUR colour = xcolour

X−Windows Colour Remapping 56

where:

colour
is the name of the colour to be remapped (see below)

xcolour
is the X−Windows colour to be used for this colour. On most systems, the
X−Windows colours available may be found in /usr/lib/X11/rgb.txt.

The available values for colour are the same as the foreground and background colours for
the Colour Remapping profile setting. The table below defines the default X−Windows
colours for each colour.

Colour Default X−Windows Colour

Black black

Blue DarkSlateBlue

Brown brown

Cyan cyan

Dark Grey DarkSlateGrey

Green green

Light Blue Blue

Light Cyan LightCyan4

Light Green LightSeaGreen

Light Grey LightGrey

Light Magenta magenta

Light Red red

Magenta magenta4

Red red4

White white

Yellow yellow

Strings

There are places in the X2 Editor where the default strings may be overridden by
user−defined strings. This may be required so the string accurately describes the
configuration, or the user may simply prefer some other text. String definition lines in the
profile are formatted as follows:

 STRING str = text

where text is the text to be displayed. Quotation marks are optional but recommended. Either
single quotes (') or double quotes (") may be used. The identifier str can be any one of the

Strings 57

following:

helpfile
Specifies the help file location, where X.HLP is the default. The help file is the file
that is edited in response to the F1 (Help) key. If not specified, the file will be loaded
from the directory specified in the XPATH if available, or from the current directory
if not.

msg_error_parse
The message that is displayed when the error parsing function is invoked.

NLS_Keyboard
The keyboard to use under Windows 32 systems. Possible values are Dutch Belgian,
French Belgian, Danish, Dutch, French, German, Italian, Japanese, Spanish,
Swedish, Swiss, or UK. If any other value is used, the default US keyboard will be
used. This string has no effect with any version except the Windows version.

Synonyms

The X2 Editor provides the ability to define user exits for internal commands. Synonym lines
have the following syntax:

 SYNONYM syn = MACRO macroname <parms>

where:

syn
is the name of the internal editor command which is to be overridden. The supported
synonym names are BEEP, CHANGE, EDIT, ERROR_PARSE, EXIT, LOAD,
LOCATE, NEWFILE, QUIT, SAVE, and STARTUP:
BEEP

Executed when the editor issues an alarm, i.e. when a Locate command
wraps around the file, or when error parsing is being performed through the
/Q edit switch. Either "WRAP" or "ERROR" will be appended to the
parameter list.

CHANGE
Executed whenever a change command is issued from the command line, i.e.
not from a macro.

EDIT
Executed when a file is being added to the editor. The target filename will be
appended to the parameter list. Note that the parameter list contains the
command line as typed, including possible wildcards and multiple files.

ERROR_PARSE
Executed when error information is to be added to a file. The current
filename will be appended to the parameter list.

EXIT
Executed when the editor is terminating, i.e. after the last file has been quit.
Nothing is added to the parameter list. Since there are no files in the editor,
most commands (including EXTRACT) will fail with a return code of 15 (no
documents loaded).

LOAD

Synonyms 58

Executed when a file has just been added to the editor. The filename will be
appended to the parameter list. Unlike the EDIT synonym, LOAD is passed
the fully resolved filename for the file just loaded.

LOCATE
Executed whenever a locate/find command is issued from the command line,
i.e. not from a macro.

NEWFILE
Executed only when a new file has just been added to the editor. The fully
qualified filename will be appended to the parameter list. If both LOAD and
NEWFILE synonyms are defined, the NEWFILE synonym is executed first.

QUIT
Executed when a file is being removed from the editor. The current filename
will be appended to the parameter list.

SAVE
Executed when a file is to be saved to disk. The target filename will be
appended to the parameter list.

STARTUP
Executed when the editor is starting, but after all command line files have
been added to the editor. Nothing is added to the parameter list.

macroname
is the name of the macro to be invoked instead of the internal editor command. It is
likely that the macro will want to invoke the corresponding internal command as part
of its processing. This can be done with the COMMAND keyword.

parms
is a list of optional parameters to be passed to the macro. The parameter list may be
appended with certain useful information, as described above.

The STARTUP and EXIT synonyms will not be executed if you invoke the editor with the
/Q (quiet) switch. If you write a macro that is intended to be used as a synonym, it is
recommended that you prefix all internal commands with the keyword "COMMAND", all
macros with the keyword "MACRO", and all external commands with the keyword
"SHELL". This restriction is unnecessary when writing macros that aren't intended to be used
as synonyms.

Some example uses of synonyms:

 synonym edit = macro hostedit edit
 synonym save = macro hostedit save

Used to download a file from the host before loading it into the editor, if the filespec matches
a predetermined format, and to upload the file again when it is saved to disk.

 synonym startup = shell mode co80,32
 synonym exit = shell mode co80,25

Used to change the screen size to contain 32 rows while in the editor, and to restore it to 25
rows when the edit session is ended.

Bracket Matching Characters

Bracket Matching Characters 59

The Ctrl−Y key is set to match pairs of brackets. Brackets may be defined with the
brackets keyword, as follows:

 BRACKETS = "o1,c1;o2,c2; ..."

where o1 and c1 define the opening and closing string for the first bracket pair, and o2 and
c2 define the second bracket pair. As many brackets as desired may be entered, but they must
come in pairs. Bracket strings may be as long as desired. For example, "#if,#endif;" would be
a valid pair of "brackets". Only one brackets line is allowed in the user profile. To use either
a comma or semi−colon as part of the brackets string, insert a backslash immediately before
the character.

In addition to user defined matching characters, X2 does special matching for highlighted
tags and conditional strings. See MATCH for further information.

Initial Editor Settings

This section describes settings which are global to every file in the ring. These settings may
be changed once the editor is active, but they define the initial state for each setting.

Newline Character◊
Saving Editor Information◊
Enter Key Behaviour◊
Insert Mode◊
Popup Window Scrolling◊
Quick Bookmark Setting◊
Status Line◊
Automatic Bookmarks◊
Multiple Bookmarks◊
Command Line Location◊
Command Stack Window Size◊
Default Extension◊
Default List◊
ESCAPE Character◊
Filename Completion Threshold◊
LINEND Character◊
NULL Character◊
OpenFile Paths◊
Shell Prompt String◊
Beep Behaviour◊
X−Windows Font◊

Newline Character

The X2 Editor recognises any combination of carriage return (CR) and line feed (LF)
characters to denote the end of a line. When it reads a file from disk, it remembers which
combination of newline characters were used to delimit the line. For newly inserted lines, it
will use the combination it finds in the first line of the file. For newly created files, it will use
both CR and LF as the newline marker. This may be changed to just LF with the following

Initial Editor Settings 60

profile line:

 DEFAULT_NEWLINE = LF

Cursor Size

The normal cursor size is an underline bar to represent Replace mode, and a medium
rectangle to represent Insert mode. If you find the cursor difficult to see with these defaults,
you may want to adjust the sizes to suit your taste. The Insert mode and Replace mode cursor
sizes may be changed in the profile:

 CURSOR_INSERT = size1
 CURSOR_REPLACE = size2

size1 and size2 may be either of SMALL, MEDIUM, and LARGE. The previous profile
options to set the cursor size were called big_cursor and small_cursor. They are still
supported, but the preferred method is to specify the cursor sizes separately.

Saving Editor Information

X2 provides the capability to save editor information with a file when it is saved to disk. It
does this by writing the cursor position and other data to an extended attribute (EA) for the
file. By default this capability is turned on, but you may turn it off in the profile with the
following line:

 EA = OFF

Enter Key Behaviour

By default, if the cursor is in the file the Enter key will always move the cursor to the first
non−blank character on the next line. If you want Enter to move to the new line when Insert
mode is off, but insert a new line when Insert mode is on, add the following line to your user
profile:

 ENTER_INSERT = ON

When the cursor is at the last line of a file, and ENTER_INSERT is OFF, or Insert mode is
off, pressing the Enter key will not move the cursor. You can make the Enter key insert a
new line in this circumstance with the following profile line:

 INSERT_EOF = ON

Cursor Size 61

Insert Mode

The default setting for insert mode is OFF. To start the editor with insert ON, insert the
following line in the user profile:

 INSERT = ON

Normally, when the editor is in replace mode, the cursor is displayed as a thin line on the
bottom of the line. When insert mode is ON, the cursor takes up half the distance from the
bottom of the line to the bottom of the previous line (the cell height). If you find it hard to see
these cursors, you may enlarge them with the following statement in the profile:

 BIGCURSOR = ON

This will cause the replace cursor to take up half the cell height, and the insert cursor will
take up the full cell height.

The Tab key normally moves the cursor to the next tab position, but when Insert mode is on,
it will insert spaces to the next tab position. To cause it to always move the cursor without
inserting spaces, add the following line to your profile:

 TAB_INSERT = OFF

Linend Setting

By default the LINEND setting is ON, but it can be turned off through the profile:

 LINEND = OFF

Popup Window Scrolling

When displaying a popup window or the popup command stack, the up and down cursor
keys are used to scroll through the list. The default editor will stop scrolling if you press the
down key while at the bottom of the list, or the up key when at the top of the list. If you want
the window to wrap around from the top to the bottom and vice versa, add the following line
to your user profile:

 POPUP_WRAP = ON

Quick Bookmark Setting

The bookmark feature may be set to utilise multiple bookmarks for each file. If this has been
done, a popup window will be displayed when a bookmark is to be set. A quicker way is to

Insert Mode 62

have the bookmarks pushed down like a stack, and have the new bookmark added to the
topmost position. This is accomplished by setting the quickmarks profile option:

 QUICKMARKS = ON

Status Line

The default setting for the status line is ON. To start the editor with STATUS OFF, the
status command must be placed in the user profile:

 STATUS = OFF

Automatic Bookmarks

The X2 Editor provides the capability to automatically generate a bookmark whenever the
cursor jumps a long way. A profile setting is provided to allow you to specify how many of
these special bookmarks are to be saved, and the minimum number of rows that the cursor
has to move before the bookmark is triggered. Automatic bookmarks are displayed for
selection with the AUTOBOOKMARK command, which is not defined to a default key. The
following command is used to set up automatic bookmarks:

 AUTO_BOOKMARKS = n,m

Where n specifies the maximum number of auto bookmarks that are to be saved, and m is the
minimum number of lines to trigger the bookmark.

As an example, auto_bookmarks could be set to 15,50 which means you have up to 15
special bookmarks, which are set whenever you issue a command that causes your cursor to
jump more than 50 lines. If you pressed ctrl−home your last cursor position would be
automatically saved, and issuing the autobookmark command would allow you to recover
your cursor position from before pressing ctrl−home.

By default this option is set to 0,0 which disables it.

Multiple Bookmarks

By default, the X2 Editor will provide a single bookmark setting. This allows you to quickly
set a bookmark with Ctrl−B and go to that saved position with Ctrl−G. If you want more than
one bookmark, you can increase the number of bookmarks with the following command:

 BOOKMARKS = n

If you select more than one bookmark, you will be prompted for the bookmark whenever you
press Ctrl−B or Ctrl−G.

Status Line 63

Command Line Location

When the Escape key is pressed a command line is displayed at the top of the screen, and the
command stack is displayed immediately below this. To change the location of the command
line to the bottom of the screen, with the command stack immediately above it, use this
profile command:

 CMDLINE = BOTTOM

Command Stack Window Size

When you display the command line with the escape key, a window is displayed which
shows previously entered commands. By default, this window is ten rows deep and 30
columns wide; however, it may be set to any number of rows between zero and twenty and
any number of columns with the following profile commands:

 CMD_WINDOWSIZE = n
 CMD_WINDOWWIDTH = m

Default Extension

If a file is specified with no extension, and it is not found on disk, a search may be made for
one or more default extensions. If a file with the default extension is found, it will be loaded
instead of the file without the extension. By default no default extension processing will be
performed, but this capability may be turned on by defining a DEFAULT_EXT line in the
profile:

 DEFAULT_EXT = ext1,ext2,ext3,...

If a file is specified without an extension, and it doesn't already exist on disk, the supplied
extensions will be tried, one at a time. The first one that results in a matching file will be
used as the file to be edited. If all default extensions are tried without a successful match, the
originally specified file specification will be used.

For example, let's say that the default_ext string is set to C,H,CMD, and that the filename
TEST is specified on the command line. X2 will load the first file found from the following
list:

TEST 1.
TEST.C 2.
TEST.H 3.
TEST.CMD 4.

If none of the above files exist on disk, a new file called TEST will be loaded into the ring.

Command Line Location 64

Default List

If the editor is started without a file specified on the command line, it will load an empty file
with no name. You can customise it so it will load files from a list, by setting the
DEFAULT_LIST in your profile:

 DEFAULT_LIST = fn

The format of fn is one file per line − the text on each line will be treated as a file to be
loaded. Lines that begin with an asterisk (*) will be treated as comments and ignored. If the
default list is specified but not found, it will be edited instead of an unnamed file. This allows
you to easily create the default list file, which is probably unique for each directory on your
system.

Escape Character

The escape character is used when displaying popup windows to control the emphasis of the
text in a WINLINE. It is followed by various characters to create text with Bold, emphasised,
or normal text. WINLINE contains more information on how to use the escape character
when building popup window lines.

The default escape character is a backwards quote (`) symbol. To change it to another
character, insert the following line in the user profile:

 ESCAPE_CHAR = c

Filename Completion Threshold

When the tab key is pressed from the command line, the last word on the command line is
expanded to find all matching filenames. By default, if more than one match is found a
popup window will show all the matches for user selection. This behaviour may be tailored
by setting a threshold in the profile as follows:

 fn_completion = n

This will cause the matching filenames to be displayed on the command line in response to
successive presses of the tab key, if the number of matches found is less than or equal to n. If
more than n matches are found the popup will still be used.

Linend Character

The default linend character is the caret (^) symbol. To change it to another character, insert
the following line in the user profile:

 LINEND_CHAR = c

Default List 65

Null Character

The null character is used in place of x'00' characters when displaying a file in text mode.
The default null character is the question mark (?) symbol, but it can be changed to another
character with a line like the following in the user profile:

 NULL_CHAR = c

OpenFile Paths

The default OpenFile function will look for a file in the current directory. If you would prefer
it to scan directories that have been defined by environment variables, you may set the
various paths with the PATHS statement:

 PATHS = paths

The paths defines a set of environment variables, where each variable may be separated by a
space or semi−colon. For example, paths may be set to INCLUDE;PATH. In this case, all the
paths defined by INCLUDE will be searched for the file, followed by all the paths specified
by PATH.

This statement has no effect in the DOS version.

Quit Response When File Modified

Controls the available responses when the QUIT command is issued for a modified file. By
default, the characters Y, N, and W and any keys that have been set to the FILE, SAVE, or
QUIT commands are acceptable responses. To bypass the function key check so that only the
characters Y, N, and W will be accepted, set this option to "charonly":

 quit_modresponse = charonly

Right Alt (AltGr) Key

Some NLS Windows keyboards don't automatically distinguish the right alt key as an AltGr
key. If you are using an NLS keyboard and the right alt key is not giving different results
from the left, you probably need to tell X2 to treat right alt as AltGr:

 right_alt_is_altgr = on

Note that this setting will have no effect if you are using any version except the Windows
version.

Null Character 66

Shell Prompt String

When the user shells to a command prompt with the SHELL command, it can sometimes be
easy to forget that the editor is still active. An indicator is added to the default prompt string
to act as a reminder. By default this string is "(x)", but it can be changed with:

 SHELL_PROMPT = "str"

where str will be prefixed to the default prompt string for all SHELL commands.

Beep Behaviour

The only time the default editor beeps is when the /ERR option is supplied on the command
line. If you like to hear a beep when the editor wraps around a file during text searches, add
the following to your profile:

 WRAP_BEEP = ON

X−Windows Font

The X−Windows (AIX) version of the editor uses graphics routines to draw its window;
therefore, the font it uses may be customised. The default font is "fixed", but it may be
changed with the XWINDOWS_FONT profile line:

 XWINDOWS_FONT = "newfont"

To find which fonts are installed on your system, go to directory /usr/lpp/X11.fnt and look at
the files with extension .inventory.

Disk Specific Customisation

It is sometimes handy to customise the editor settings by disk. For example, when an OS/2
mounted disk is really resident on an AIX system, it would be nice to automatically save files
with blanks compressed into tab characters.

Keywords are available to alter the editor settings based on the disk letter. The settings
available may be found in User Profile Disk Customisation.

User Profile Disk Customisation

Keyword Text Default Meaning

disk disk1,disk2,... N/A Defines a list of disks for which the following

Shell Prompt String 67

definition(s) apply. There is a maximum of 27 disk
letters that may be defined. The special disk * may be
used to set disk settings for all disks.

disk_ea ON | OFF ON
Controls saving of file information with a file as
extended attributes (EAs). ON saves the information,
OFF discards it. Overridden by the EA command.

disk_linend
CR | LF |
CRLF | ASIS

ASIS

Defines the desired linend character(s) to be used
when saving a file. Each line may be terminated with
a Carriage Return, a Line Feed, or the two together.
The default value of ASIS means that lines should be
saved with the same termination character as they
had when they were read.

disk_tabs
ON | OFF |
ASIS

ASIS

Allows file lines to be saved with multiple
occurrences of blanks compressed into tab characters.
The default value saves lines with no tab
compression, which improves performance but
increases the amount of disk space required to save
the file.

File Extension Specific Customisation

Customisations are often required for specific file types. File types are recognised in one of
three ways:

By the file extension 1.
By the file pattern 2.
By the first file line 3.

The file extension is defined to be everything after the last period (.) in a file name. If it
matches a supplied extension, profile customisation for that extension will be used.

A file pattern may be defined in the profile for cases where a file has no extension, or where
the portion before the period is more suitable for categorising files. Wildcards may be used in
file patterns. An example of this method of typing a file comes from xprofile.def:

 file_pattern = xprofile.*

If the above two tests have failed to provide a match, the first line of the file is examined for
a shell extension. If the first two characters of the line consist of "#!", the text after the last
file separator (slash on Unix systems, backslash otherwise), is used to search for profile
customisation. For example, if the first line of a file reads #!/usr/bin/perl, then the file
"extension" is assumed to be perl. This feature is most useful on Unix systems, but is
available in all versions except for the DOS version.

A series of keywords is available to set the file extension, and to specify comment formatting
and syntax expansion parameters for that file type. Each has the syntax "keyword = text",
where keyword and text are defined in User Profile Extension Customisation.

File Extension Specific Customisation 68

Default Extension

If desired, you can override the system defaults for various extension−specific settings. This
is done by specifying a default filetype of *. This will be used if no other matching filetype is
found for a file. For other extensions which are defined after the default extension in the
profile, the values defined for the default extension will be the initial values for the
definition. Note that changes to the default file extension of * will only affect file extensions
that are undefined or defined later in the sequence.

Inline Comment Formatting Control

Comment formatting is an important part of the X2 Editor. The formatting of inline
comments can be controlled through the comment_formatting keyword in the user profile.
This line has the following format:

 comment_formatting = flag1 | flag2 | flag3... | flagN;

The following flags are available:

ALIGN_QUICK
Align (without converting) quick_comments to the current margins according to the
left/right settings. Incompatible with the CONVERT_QUICK and
CONVERT_ALLQUICK flags.

COLSTART
Only align comments starting in comment_column

CONVERT_ALLQUICK
Controls whether inline comments indicated by the quick_comment string should be
converted to use the defined comment_prefix and comment_suffix strings. If set, any
occurrence of quick_comment within a line will be converted to the
comment_prefix string, and the comment_suffix string will be added to the end of the
line. If quick_comment is null, this option has no effect.

CONVERT_QUICK
Controls whether inline comments indicated by the quick_comment string should be
converted into regular comment strings. This option differs from the above in that
only inline quick comments that have non−blank code before the comment will be
converted. If quick_comment is null, this option has no effect.

C_CONDITIONAL
Use C formatting rules to determine left/right alignment. See Inline Comments for
details.

CPP_CONDITIONAL
Use C++ formatting rules to determine left/right alignment. See Inline Comments for
details.

IF_MODIFIED
Only align comments on lines that have been altered. This setting will ensure that
comments are only re−formatted if the line has been modified. Simply scrolling
through the file with the down cursor key will not alter the file. Handy if you're
viewing someone else's code and you don't want to change all their comments.

KEEP_BLANKS
Keep leading and trailing blanks in right aligned comments. Normally the editor will

Default Extension 69

strip out any blanks before and after the comment text before pushing the comment
to the right comment formatting margin. This option forces it to maintain any blanks
that may have been inserted in the comment.

KEEP_TRAILSPACE
If comment_prefix contains one or more trailing spaces, then those spaces must be
found in the input text for it to be recognised as a comment. By default, any trailing
spaces are removed from comment_prefix before input text is checked for comments.

LEFT
Format all comments to the left comment margin

NO_BLOCKS
By default, blocks of text that are formatted with the Alt−P key are formatted so that
the defined comment_prefix and comment_suffix strings are inserted at the beginning
and end of each output line. To have blocks formatted as just text, include this option
for the desired file extension.

NONE
Make no changes to comments. Useful to turn off previously set commenting flags.

RIGHT
Format all comments to the right comment margin

UPPERCASE
Defines whether the code portion of a comment should be upper cased as part of
formatting. The rules for upper casing a line are:

If the UPPERCASE flag is FALSE, the line is not altered 1.
Nothing is touched after the first occurrence of the comment_prefix string (if
found)

2.

Anything within either single (') or double (") quotes is untouched. 3.
If a conditional_prefix is defined for the filetype, any line beginning with the
conditional_prefix string is not changed.

4.

For most programming languages, the default of FALSE will be desired. Assembly
language is the most likely candidate for a setting of TRUE.

Note that all the formatting flags must be written on a single line, and that all the flags are
re−set to their default values whenever a new comment_formatting profile line is
encountered. Only one of the LEFT, RIGHT, C_CONDITIONAL, and
CPP_CONDITIONAL flags may be specified for any file extension.

Code Functions List

When viewing a file containing source code, the Ctrl−F11 key may be used to display a
window containing a list of each function defined in the current file. The list will be sorted
alphabetically by function name, and the current function (if available) is selected. Function
recognition is set up through the function_id keyword in the user profile. This keyword has
the following format:

function_id = "keyword", flags, <WORDNUM=w,> <STARTLINE=s,> <MAXLINES=m,>
 <COLUMN=c< &|− c2,>> <NAME_OFFSET=n>;

where:

keyword

Code Functions List 70

is a text string that must be found on a line to trigger the following parameters. If
keyword equals the special string "_RESET", all previous function_id settings will be
cancelled.

flags
is one or more of the following options, which may OR'd together with a vertical bar
(|) character:
ANY

A placeholder option, meaning no restrictions on the placement of the
keyword information.

CANCEL
If found, cancels a search for a required keyword.

END_OF_WORD
The keyword must be located at the end of a word, i.e. there is non−blank
text before the keyword, and the keyword is either at the end of the line or it
is followed by a blank character.

IGNORE
If found on a line, it is definitely NOT a function, no matter what other
keywords are found.

MATCH
Once the given text is found, use bracket matching rules to find the
corresponding character before identifying a function.

NO_DUPES
Indicates that the keyword string must NOT be found before the next
REQUIRED keyword.

OPTIONAL
If found under the specified conditions, implies that the previously found
string is definitely to be treated as a function. This is designed to work with
C++ constructors to stop initialisers from inhibiting the constructor line
recognition.

PREVIOUS
Starting from the current position, scan backwards for the supplied text.

REQUIRED
Together with the MAXLINES parameter, indicates that the keyword must be
found within the next m lines, or the current line is not a function.

REQUIRED_SET
The keyword is part of a set of words that may indicate a function. One or
more of the required_set keywords must be found on the current line.

START_OF_WORD
The keyword string must be found at the beginning of a word, i.e. it must be
preceded with a blank character.

w
is the position that keyword must be found in the line to be valid. If this parameter is
omitted, keyword may be anywhere on the line.

s
The starting line number (from the current line) to scan forwards for a REQUIRED,
CANCEL, or OPTIONAL keyword. This number defaults to 1, i.e. start looking at the
next line; however, it may be set to 0, if a second scan is required of the current line.

m
The number of lines to scan forwards for a REQUIRED, CANCEL, or
OPTIONAL keyword.

c

Code Functions List 71

is the file column that keyword must start in to be recognised. If this parameter is
omitted, keyword may be located anywhere on the line.

c2
if present, indicates that keyword is restricted to starting between columns c and c2 in
the file. If specified with an ampersand (&), it is further restricted to starting in
column c or c2. The dash (−) character is used to signify the range of starting
columns.

n
if present, indicates the offset in blank−delimited words from the indicator text
keyword, to the actual function name. This information is used to display the
function name in a different colour, and for sorting the function list popup window.

Function recognition can be set up for any language; however, it is mainly intended for use
with the C, C++, Rexx, NetRexx, SCRIPT, and ASM languages.

Function Identification Examples

The rules for identifying functions in various programming languages differ widely, making
the required profile code sometimes quite complicated. A few examples will hopefully
illustrate the purpose behind some of the above flags and parameters.

The first example is commonly used when parsing Rexx source code. It says that if the first
word on the line ends with a colon character, it is a function definition line. The name offset
of −1 tells the editor to treat the first word before the colon as the function name.

 function_id = ":", END_OF_WORD, WORDNUM=1, NAME_OFFSET=−1;

In the next example, we're using the function recognition a bit differently; we again want to
highlight lines in which the first word ends in a colon, but this time we want to exclude those
lines in which the first word also contains a right parenthesis. The start line offset of 0 means
to start the Cancel scan at the current line, i.e. the line that has tentatively been flagged as a
function. Adding maxlines of 0 means we only want to scan the current line before we stop
searching.

 function_id = ":", END_OF_WORD, WORDNUM=1, NAME_OFFSET=−1;
 function_id = ")", CANCEL, STARTLINE=0, MAXLINES=0, WORDNUM=1;

The following example is used to scan X2 Editor profile definition files. There are two
possible triggers for a "function" − the first word on the line may be either "extension" or
"file_pattern". If found, the actual function name is considered to be two words after this text,
and could contain the special characters '.', '*', and ',' in addition to the normal alphanumeric
characters.

 funcname_chars = ".*,";
 function_id = "extension", REQUIRED_SET, WORDNUM=1, NAME_OFFSET=2;
 function_id = "file_pattern", REQUIRED_SET, WORDNUM=1, NAME_OFFSET=2;

Our next example is starting to get more complicated, and is used for parsing Java source
files. As part of the profile processing we have chosen to extend the base "C" filetype, but we
want to handle functions separately. So we start the function id processing with the
_RESET keyword, which clears all previous definitions. We then specify that any line that
contains a semi−colon in any position, is to be ignored. If we didn't do this, then any function

Code Functions List 72

call would be flagged as a function definition, which is obviously not what we want. We then
specify that any line containing either the word "class" or a left parenthesis is maybe a
function − we have also required that it be followed by a left brace in either column 1 or
column 3, up to 15 lines from the line in which the special text was found. We've also told
the editor that if we find a right brace in column 3, before we find the left brace, then we
don't want a function. The NO_DUPES flag on the left parenthesis specification, means that
we must find a left brace before we find another left parenthesis; otherwise, no function.

 base_extension = C
 function_id = _RESET;
 function_id = ";", IGNORE;
 function_id = "CLASS", REQUIRED_SET, NAME_OFFSET=1;
 function_id = "(", REQUIRED_SET | NO_DUPES, NAME_OFFSET=−1;
 function_id = "{", REQUIRED, MAXLINES=15, COLUMN=1&3;
 function_id = "}", CANCEL, MAXLINES=15, COLUMN=3;

The standard processing for C source files is very complicated, which reflects the free coding
format that is allowed by the C language. We start by specifying that any line that begins
with a hash symbol or contains a semi−colon is to be ignored. This covers pre−processor
statements (#include) and function calls. We now have three "trigger" strings to flag a
function line, and two strings which may cancel the function identification. These are similar
in form and function as for the Java processing described above.

 function_id = "#", START_OF_WORD | IGNORE, WORDNUM=1;
 function_id = ";", IGNORE;
 function_id = " STRUCT ", REQUIRED_SET, NAME_OFFSET=1;
 function_id = "CLASS", REQUIRED_SET, NAME_OFFSET=1, WORDNUM=1;
 function_id = "(", REQUIRED_SET | NO_DUPES, NAME_OFFSET=−1;
 function_id = "{", REQUIRED, MAXLINES=15, COLUMN=1;
 function_id = "}", CANCEL, MAXLINES=15, COLUMN=1;
 function_id = ");", CANCEL, MAXLINES=15, COLUMN=1;

The above sample is good for identifying functions in C source code, where the opening and
closing braces are always in column one of the file. Some people prefer to write C code with
the opening brace following the function definition, e.g.

 int main (int argc, char *argv[]) {
 ...
 }

This code is more difficult to parse, but the following profile definitions may help:

 function_id = _RESET
 function_id = "#", START_OF_WORD | IGNORE, WORDNUM=1;
 function_id = ";", IGNORE;
 function_id = " STRUCT ", REQUIRED_SET, NAME_OFFSET=1;
 function_id = "CLASS", REQUIRED_SET, NAME_OFFSET=1, WORDNUM=1;
 function_id = "}", MATCH, COLUMN=1;
 function_id = ")", PREVIOUS | MATCH, NAME_OFFSET=−1;

Our last example is the definition for C++ files. As C++ is simply an extension of the C
language, we'll want to include all the C function recognition statements, with a few
extensions of our own. In order to handle constructors we need to check for a colon in word
number one of the following 15 lines. If we didn't include this check, constructors that called
other initialisers would fail our checking, as a left parenthesis would be found before the left

Code Functions List 73

brace. Note that we wish to include the colon and tilde characters in our list of function name
characters, to handle member functions and destructor functions respectively.

 base_extension = C
 funcname_chars = ":~";
 function_id = ":", OPTIONAL, WORDNUM=1, MAXLINES=15;

Syntax Expansion

X2 provides the ability to automatically expand keywords into additional text. This provides
a handy way to reduce typing and syntax errors. Every time the space bar is pressed, a check
is made on the line text against user defined syntax triggers. If a trigger is found, the
specified replacement text is entered, and the cursor re−positioned. Insert mode is always set
to allow continued typing. Syntax expansion is defined in the user profile, with the following
keywords:

expand_keyword = "text"
Defines a syntax expansion keyword. If text is found as the only text on a line when
the space bar is pressed, the line will be replaced with expand_replace line(s) or an
expand_macro macro will be executed. If text is equal to the special value _RESET,
any previous expansion keyword settings will be removed from the profile. If
text contains the text "\1" the text must only match up to this variable. The following
word will be substituted for any occurrences of "\1" in the expand_replace lines.
Note that only one substitution variable may be specified.

If desired, multiple keywords may be specified in text by separating them with
commas. For example, the line "expand_keyword = kw,keyword" will expand with
expand_replace or expand_macro if either kw or keyword is found on the line. To
include a comma in the keyword text, prefix it with a backslash.

expand_macro = "text"
Defines the name of a macro which will receive control when a syntax expansion
keyword is recognised. There may only be one expand_macro line for a given
expand_keyword, and this keyword is mutually exclusive with expand_replace. The
macro is responsible for expanding the keyword. The current line is deleted before
the expansion macro is executed, but its indentation and contents are supplied to the
macro as parameters.

expand_replace = "text"
Defines a syntax expansion replacement line. All replacement lines up until the next
expand_keyword definition are used to replace the active keyword. If the
expand_replace text contains the string "\c" the cursor will be placed at that location,
unless the string is escaped by preceding it with another backslash, i.e. "\\c" will be
treated as just the text "\c". Insert mode is always set when a keyword is expanded.

Besides "\1" and "\c", special substitution variables may be included in
expand_replace strings, as defined in the following table. Note that each variable
identification character is case sensitive.

Syntax Expansion 74

Variable Meaning

\\ Escape, replaced with \

\1 Substitution variable

\B Full written month, e.g. February

\c Cursor placement

\CP The currently defined comment prefix string

\CS The currently defined comment suffix string

\d 2 digit day number, e.g. 06

\D Day number, e.g. 6

\f Unqualified filename, e.g. cdPlayer.ini

\F Fully qualified filename, e.g. C:\WINDOWS\cdPlayer.ini

\H Hour of the day, 24 hour clock

\m 2 digit month number, e.g. 02

\M Minute of the hour, e.g. 09

\S Second of the minute, e.g. 03

\y 2 digit year number, e.g. 00

\Y 4 digit year number, e.g. 2000

Conditional Strings

Many programming languages include some sort of preprocessor statement to conditionally
include blocks of code. For example, the C language compilers provide the #if, #elif, #else,
and #endif directives. The X2 Editor supports these constructs through the
conditionals keyword, which has the format str1, str2, str3, ..., strM, strN. These strings are
used with the CONDITIONAL and MATCH commands.

The CONDITIONAL command can take one of three parameters: IF, ELSE, or END. With
the IF parameter the first conditional string, i.e. str1, will be input into the current file. With
the END parameter, the last string (strN) will be input. If the ELSE parameter is specified, the
second last (strM) parameter is input into the file.

The MATCH command takes no parameters. If the cursor is on str1 the cursor will be moved
to the next occurrence of any of str2 through strN. If the cursor is on strN it will be moved to
the previous occurrence of str1. If it is located on any of str2 through strM, it will be moved
to the next occurrence of any of str2 through strN.

The MATCH command will recognise strings other than conditionals. If brackets have been
defined and the cursor is positioned on one of these strings, the cursor will be moved to the
equivalent bracket. Repeated invocations will toggle the cursor between the open and close
bracket string. If the cursor is positioned on a colon (:) character, it is assumed to represent
the start of a GML tag. If the next character is the letter E, a backwards scan will be made for
the tag. "Tags" that may be found inside comments or quoted strings are ignored for the
purpose of the match command.

Conditional Strings 75

Customising the OpenFile Function

The X2 Editor provides a key (Ctrl−P in the default configuration) that is used to open a file
based on information on the current line. By default, it looks for the first text on the line that
contains valid filename characters and uses that; however, the default behaviour may be
extended by filetype through the user profile. For any extension one or more
openfile_id entries may be defined, with the following format:

openfile_id = "keyword", WORDNUM=w, <PATH=p,> <NO_BLANKS,>
<PATHSEARCH=ps,> <DEFAULT_EXT=xxx>;

where:

keyword
defines a pattern that is used to locate the filename on the line. It contains the
variable \f to indicate the beginning of the actual filename; if any text precedes \f it
must be found on the line for this entry to be applied. In addition to \f, optional
parameters \r and \c may be specified to define a starting row and column number,
respectively.

w
is the starting position that keyword must be found in the line to be valid. Note that
the WORDNUM parameter is required.

p
is an option path string that will be prefixed to the target filename, if found. Normal
filename expansion characters such as "=" can be specified; see File Specification.

NO_BLANKS
an option which specifies that the filename is not expected to contain blanks. If not
specified, the default is to take all characters after \f as part of the filename.

ps
is a string that is found in the source file on another line; if found in the file, the
immediately following text is taken to be the path information. Note that the
PATH and PATHSEARCH options are mutually exclusive.

xxx
the extension to add on to the filename when opening the file. If the keyword defines
the \f filename to be afn, then the file to be opened will be called afn.xxx.

Style Formatting

The editor has the capability of re−formatting source code files according to pre−specified
rules. This is useful when viewing someone else's source code − it is much easier to
concentrate on the content of the code when the coding style is familiar and not distracting.
Style formatting is not intended to be perfect; rules may be specified which formats most
code so it is close to the desired output, but it is almost impossible to get all code to format
perfectly. Still, it is a useful function that can assist in the review of source code files.

Style formatting is set up for a file extension in the user profile. The format of style
formatting lines is:

 styleword = keyword, flag1 | flag2 | ... flagN;

Customising the OpenFile Function 76

where keyword is a keyword that, if found at the beginning of a file line, will cause
succeeding line(s) to be formatted according to the specified flags. Specify a keyword of
_RESET to clear previously defined style keywords.

Flags can be:

INDENTTHIS
Indent code starting with the line beginning with the keyword

INDENTNEXT
Indent the code following a line beginning with the keyword

INDENTNEXT1
Indent just one line following a line beginning with the keyword

INDENTNEXT2
Indent the next two lines following a line beginning with the keyword

UNDENTTHIS
Undent lines beginning with the line that begins with the keyword

UNDENTNEXT
Undent lines beginning with the line after the line that begins with the keyword

UNDENTDBL
Double the normal undent, i.e. undent twice the code_indent value

PUSH
Save the current indentation on a LIFO stack

POP
Restore the indentation to the previously PUSHed value

Note the style formatting uses the utilities DLL and is unsupported in the DOS version.

User Profile Extension Customisation

Keyword Text Default Meaning

extension ext1,ext2,... N/A

Defines a list of extensions for
which the following definition(s)
apply. Up to 50 file extensions
may be defined in the entire
profile. If ext1 is * the following
information is taken to be the
default for any file extension. The
supplied list may represent either
operating system file extensions or
VM host filetypes.

file_pattern ext1,ext2,... N/A A synonym for the
extension keyword, which is more
meaningful when one or more of
the "extensions" represent a full
filename. If a filename is required
in the list, it must be followed by a

User Profile Extension Customisation 77

dot (.), even if it has no extension.

a−pfline "text"

" 2=Comp
3=Sync
4=Merge
9=MDY "

The text to display on the bottom
line of the screen when either Alt
key has been pressed and held
down.

alt_highlight _kw word1,word2,... _RESET

Defines an alternate set of
keywords which should be
highlighted on the screen with the
ALT_KEYWORDS colour. Refer to
Keyword Highlighting for details.

APIFile <d:\path\> fn.ext ""

Defines the file which contains a
list of API expansion text.
Required to turn on the API
Expansion feature. If no path
information is specified, the file is
assumed to be in the directory
specified in the XPATH if
available, or in the current
directory if not.

autosave n 0
Defines the number of alterations
that can be made to the file before
it is automatically saved to disk.

base_extension extname "*"

Identifies the previously defined
extension data that should be used
as the initial data for the current
extension. This statement should
be located immediately after the
extension keyword.

c−pfline "text"

" 3=UC/m
4=LC/m
5=MC/m
7=ShLf
8=ShRt
9=YMD
10=C/Wd
11=Fnc
12=Rng"

The text to display on the bottom
line of the screen when either Ctrl
key has been pressed and held
down.

code_indent n 2

Defines the number of spaces to
indent code on a new line. This
value will only be used if the
cursor is being moved to a blank
line and the first or last character
on the previous line is a left brace
({) character.

code_type text NONE
Identifies the type of source code
contained in the file. Any text is
valid.

User Profile Extension Customisation 78

comment_

anycolumn
true/false true

Controls whether a comment may
be located in any column in the
file, or must be located in the
comment_column column.

comment_column nn<,t> 40,8

Controls the formatting of inline
comments. By default, inline
comments that are to be
left−aligned will be formatted so
that the beginning of the comment
is located in column 40 of the file.
This option allows you to change
that column to nn. If the code
portion of a line extends past
column nn, the comment will be
aligned on the next available
multiple of t bytes.

comment_escape c ""

If the comment_prefix string is
prefixed by c, the string is NOT
treated as a comment but as part of
the regular text.

comment_
formatting

Flag bits none

Defines the initial formatting of
comments. See Inline Comment
Formatting Control for definitions
of the various options.

comment_prefix string ""

Defines the text which identifies
the beginning of a comment. This
text is used when formatting
comments. It also identifies a
comment for highlighting
purposes. Note that some of the
comment_formatting flags control
exactly how the comment_prefix is
interpreted.

comment_suffix string ""

Defines the text which identifies
the end of a comment. Note that
quotes are only necessary if the
text contains either leading or
trailing blanks.

conditional_prefix string ""

Defines a string which identifies
the beginning of a conditional
string. This string is used by the
UPPERCASE option of the
comment formatting logic to
bypass automatic code upper
casing.

conditionals str1,str2,...strN "#if 0, #else,
#endif"

Defines strings which are to be
used with the

User Profile Extension Customisation 79

CONDITIONAL command to input
conditional compilation IF, ELSE,
and END commands. These strings
are also used for "bracket"
matching; for this function more
than one str2 string may be
specified; see Conditional Strings.

end_blanks on/off off

When ON, allows trailing blanks
to be added at the end of any line.
The blanks will be saved on disk
as part of the line.

eof_text text
"==== End
Of File
===="

The text to be displayed to mark
the end of the file data

expand_keyword text _RESET
Defines a syntax expansion
keyword. See Syntax
Expansion for details.

expand_macro text N/A

Defines the name of a macro
which will receive control when a
syntax expansion keyword is
recognised. See Syntax
Expansion for details.

expand_replace text N/A
Defines a syntax expansion
replacement line. See Syntax
Expansion for details.

expand_tabs on/off on

Controls expansion of tab (hex 09)
characters to blanks. When on,
blanks are inserted so that the
column is moved to the next
position that is an even multiple of
eight.

fieldtemplate
<c1 [U P]> <c2 [U
P]> ...

""

Specifies a default field template
which will be applicable to all
lines in the file. See
FIELDTEMPLATE for more
information on fieldtemplate
settings.

findword_anycase on/off off

Allow finding the word under the
cursor in mixed case with the
FIND_WORD function. The
default value of OFF forces an
exact case search.

flowtonew on/off off

If ON, flowed text is inserted as a
new line; if OFF, flowed text is
inserted at the beginning of the
next line.

User Profile Extension Customisation 80

funcname_chars

"charlist" ""

Defines characters which are used
in addition to the default set
(alphanumerics plus the
underscore character) to recognise
the beginning and end of a
function name in function
recognition and highlighting.

function_header true/false false

If true, scrolling to the next or
previous function will move to
possible header text above the
actual header definition line. If set
to the default of false, function
scrolling will move directly to the
function definition line.

function_id

"keyword", flags,
<WORDNUM=w,>
<STARTLINE=s,>
<MAXLINES=m,>
<COLUMN=c
<&c2>,>
<NAME_OFFSET
=n,>
<NAME_LENGTH
=l>;

_RESET

Defines keywords which are used
by the editor to identify functions
for a given filetype. See Code
Functions List for more
information about the parameters.

helpfile fn ""
Defines fn as an override to the
default, globally defined help file,
for just the current filetype.

highlight
_keyword

word1,word2,... _RESET

Defines keywords which should be
highlighted on the screen with the
KEYWORDS colour. Refer to
Keyword Highlighting for details.

highlight _quotes true/false true

Specifies whether strings which
are delimited by either single or
double quotation marks should be
highlighted with the quotes colour.

highlight_tags "prefix1, suffix1;
prefix2, suffix2;
...prefixn, suffixn;"

"" Defines the beginning and ending
text that identifies tags which are
to be highlighted. Any text on a
line between prefixn and
suffixn will be highlighted with
keywords emphasis. Tag strings
must come in pairs, and are
separated by commas and
semi−colons. To use either a
comma or semi−colon as part of a
tag string, insert a backslash
immediately before the character.
To really enter a backslash, escape

User Profile Extension Customisation 81

it by entering two backslashes in a
row. To allow any alphabetic
character to be contained in a
prefix string, use the special
character sequence "a−z".

indent_keywords "kw1,kw2,...kwn" ""

Defines a set of comma−delimited
words which cause the cursor to be
indented by the
code_indent number of spaces, if it
is moved to a blank line and the
previous line begins with one of
the specified keywords.

input_keywords "kw1,kw2,...kwn" ""

Defines a set of keywords,
delimited by commas, which
trigger the input_macro if found at
the beginning of a line when a new
line is input. This check is skipped
if the INPUT command is issued
from within a macro.

input_macro
"macroname
<parms>"

""

The name of the Rexx macro to be
executed if a new line is added and
the current line begins with one of
the input_keywords. The
indentation and the contents of the
current line are supplied to the
macro as parameters.

key XX command varies

Defines the XX key to the
specified command, for the current
file extension only. Usually used
as an override to a default key.

keyword_case exact/any any

If exact, highlight keywords must
be found exactly as typed to be
highlighted; if any, a
case−insensitive search will be
used to find highlight keywords on
a line.

keyword_trans
upper/lower/
mixed/AsIs

AsIs

Controls keyword translation.
Possible values are UPPER, lower,
Mixed, and AsIs, where AsIs is the
default. Any changed lines
containing words from either the
highlight_keyword or
alt_highlight_kw lists will have the
keywords translated into the
specified case.

margins n1 n2 n3 n4 1 100 1 77 Defines formatting margins.
n1 and n2 define the left and right

User Profile Extension Customisation 82

text margins for auto−flow. n3 and
n4 define the desired block
comment margins.

openfile_id

"keyword",
WORDNUM=w,
<PATH=p,>
<NO_BLANKS,>
<PATHSEARCH
=ps,>
<DEFAULT_EXT
=xxx>;

_RESET

Defines keywords which are used
to provide a filename for the
OPENFILE function. See
Customising the OpenFile
Function for more information
about the parameters.

pfline "text"

"F1=Hlp
2=SpJn
3=Quit
4=Sav
5=Nm
6=New
7=PgUp
8=PgDn
9=Undo
10=Redo
11=Prv
12=Nxt"

The text to display on the bottom
line of the screen when no shift
keys are active.

quick_comment string ""

A string which will be converted
to the defined comment_prefix and
comment_suffix strings. A
commonly used quick_comment
string is //.

save_options string ""

Provides default options to be used
with the SAVE and FILE
commands. Any combination of
valid save options may be
specified, but command line
options will override these
defaults.

s−pfline "text"

"F1=ScrL
2=ScrR
3=ScrU
4=ScrD
5=CtrLnVrt"

The text to display on the bottom
line of the screen when either Shift
key has been pressed and held
down.

shadow on/off on
Sets the initial value of the
SHADOW setting for this file
type.

sort_funclist on/off on
Controls whether the function list
popup window will be sorted.

split_align_paren on/off off If set to ON, split new text will be
aligned beneath an open

User Profile Extension Customisation 83

parenthesis from the previous line,
if found.

styleword keyword, flags undefined
Sets a keyword and the formatting
style for style formatting. See
Style Formatting for details.

syntax on/off on
Sets the initial value of syntax
assistance for this file type.

tabs
n1 <n2 n3 n4...>
<,m>

8

Defines the initial tab stops. If
n1 is the only number specified,
tabs will be set every n1 spaces,
beginning in column 1. If the
,m parameter is specified, soft tab
settings will continue from the last
hard tab stop specified, every
m spaces. Note that tab stops must
be numeric and they must be
specified in ascending sequence.
There is a limit of 31 hard tab
settings for each file type.

tag_end text ""

The string that indicates the end of
a highlight_tag. For example, for
HTML markup, a beginning tag is
indicated with <tag>, and the
corresponding ending tag is
</tag>. For this filetype, the
tag_end string will be "/".

tof_text text
"==== Top
Of File
===="

The text to be displayed to mark
the beginning of the file data

undent_keywords "kw1,kw2,...kwn" ""

Defines a set of comma−delimited
words which cause the cursor to be
undented by the
code_indent number of spaces, if it
is moved to a blank line and the
previous line begins with one of
the specified keywords.

undo_limit N −1

Maximum number of undo lines to
save. −1 means save all changes
until the file is saved to disk. 0
means save no undo lines. N
means save the previous N
changed lines, although this option
is not yet implemented.

wrap on/off on
Sets the initial value of the WRAP
setting for this file type.

User Profile Extension Customisation 84

Commands and Macro Support
Macro Debugging♦
EXTRACT Command♦
Locate Text♦
Change Text♦
Popup Windows

List Box◊
Message Box◊
Prompt◊
Password Prompt◊

♦

Editor Commands
ACCENT◊
ADD◊
ALL◊
ALT◊
APPEND◊
ASCII◊
AUTOBOOKMARK◊
AUTOSAVE◊
BACKSPACE◊
BACKTAB◊
BACKWARD◊
BOOKMARK◊
BOTTOM◊
BOTTOMSCREEN◊
BROWSE◊
C, CHANGE◊
CASECHAR◊
CASEWORD◊
CD◊
CENTRELINE◊
CENTRETEXT◊
CHANGES◊
CLIP◊
CMDLINE◊
CMDTEXT◊
COMMAND◊
COMMENTLINE◊
COMMENT_STYLE◊
COMPARE◊
CONDITIONAL◊
COPYLINE◊
COPYTOCMD◊
COUNT◊
CURR_ALT_PFLINE◊
CURR_CTRL_PFLINE◊
CURR_PFLINE◊
CURR_SHIFT_PFLINE◊
CURSOR◊

♦

Commands and Macro Support 85

DATE◊
DELCHAR◊
DELDUPES◊
DELETE◊
DELSYM◊
DELWORD◊
DIAG◊
DOWN◊
DUPLICATES◊
E, EDIT, X◊
EA◊
EOF_TEXT◊
ERASEEOL◊
ERRORS◊
EXCLUDE◊
EXITRC◊
EXPAND◊
EXT◊
EXTRACT◊
FFILE◊
FIELDTEMPLATE◊
FILE◊
FIND_WORD◊
FORWARD◊
FT◊
FUNCWIN◊
GET◊
HELP◊
HEX◊
HIDEFILE◊
INPUT◊
INPUT_ERRORLINE◊
INSMODE◊
JOIN◊
KEY◊
KEYIN◊
KEYIN_NAME◊
KEYS_PLAY, PLAYBACK◊
KEYS_RECORD◊
KEYS_WRITE◊
L, LOCATE◊
LINECOLOUR◊
LINEFIELDS◊
LINEMACRO◊
LINEND◊
MA, MARGINS◊
MACRO◊
MARK◊
MATCH◊
MESSAGEBOX◊
MSG◊

Commands and Macro Support 86

MSGMODE◊
NAME◊
NEXT, NEXT_FILE◊
NEXT_ERROR◊
NEXT_FUNC◊
NEXT_PARA◊
NEXT_SENTENCE◊
NEXT_SYM◊
NEXT_WORD◊
NOP◊
NUMFILES◊
OPENFILE◊
PAGEDOWN◊
PAGEUP◊
PASSWORD◊
PFLINE◊
PRESSKEY◊
PREVIOUS_FILE◊
PREVIOUS_FUNC◊
PREVIOUS_PARA◊
PREVIOUS_SYM◊
PREVIOUS_WORD◊
PROMPT◊
PUT◊
QQ, QQUIT◊
QUIT◊
REDO◊
REFORMAT◊
REFRESH◊
RENAME◊
REPEAT_FIND, REPFIND◊
REPLACE◊
RESOLVE_FN◊
RESTORE_FIND◊
REVERSE_FIND◊
RINGWIN◊
SAVE◊
SCROLL◊
SETRESULT◊
SHADOW◊
SHADOWTEXT◊
SHELL◊
SHOW◊
SHOWLINE◊
SORT◊
SPAN◊
SPLIT◊
SPLITJOIN◊
STATUS◊
STATUSTEXT◊
STYLE◊

Commands and Macro Support 87

SYNTAX◊
TAB◊
TABLINE◊
TABS◊
TIMER◊
TITLE◊
TOFEOF◊
TOF_TEXT◊
TOP◊
TOPLINE◊
TOPSCREEN◊
UNDO◊
UNDO_BLOCK◊
UNDO_LIMIT◊
UP◊
WINDOW◊
WINLINE◊
WINSELECT◊
WINSORT◊
WINWAIT◊
WRAP◊
nnn◊
/text</< |/& /text2/>>◊

Command Summary
Command Summary (A−H)◊
Command Summary (I−P)◊
Command Summary (Q−Z)◊

♦

X2 provides the capability to define your own commands through a macro facility. Macros
must be written in Rexx, and have a file extension of .X or .CMD. If your macros are
installed somewhere on your PATH, they can be invoked directly by simply typing the macro
name. If not on your path, the path to the macro must also be specified.

X2 supports Classic and Object Rexx on OS/2, and Object Rexx under Windows 95,
Windows NT, Linux, and AIX. The Regina Rexx interpreter is supported as an alternate for
Windows 95 and Windows NT, and the only interpreter under Sun Solaris. Rexx is
unsupported in the DOS version.

When invoking a macro, type either its name or "MACRO name" on the command line. Note
that you should not include the file extension unless it is a .CMD file − the X2 Editor
automatically suffixes the macro name with .X before searching for it on disk. On the other
hand, macros with an extension of .CMD must include the file extension on the command
line if they are to use the X addressing environment to communicate with the editor.

When a macro is started, the default Address for command resolution is X. Commands that
you issue to the operating system environment through the editor will work, but it is
recommended that you use Address CMD when you wish to execute a shell function. You
may use the Address() function in a Rexx program to determine the current address
environment. Note that if you are using Regina Rexx, Address CMD will not work, and you
should use Address SYSTEM instead.

Commands and Macro Support 88

When you issue a command on the command line, it is first checked against the builtin editor
commands. If not found, it is assumed to be a macro name, and the command is issued as a
macro. If the macro was not found, it is issued to the operating system as a shell command.

You can specify parameters to a macro on the command line. Facilities exist to communicate
with the editor by issuing any editor command from the macro.

If a macro supplies a numeric return code on the Exit statement, this return code will be
passed to the calling program, which may be another macro.

Note that macro names can only contain alphanumeric characters, i.e. any of the letters a−z
and numbers 0−9. This is because X2 terminates a command at the first non−alphanumeric
character. The first non−alphanumeric character becomes the start of the command
arguments, if any.

Macro Debugging

If desired, macros can be debugged by inserting Trace statements in the code and watching
the results on the screen. If there are many statements they may scroll off the screen and be
difficult to read. Any trace statements may be re−directed to a file with the greater−than (>)
sign, as follows:

 macroname parms >macro.out

In the above example, macroname would be executed normally, with the specified parms. If
macroname contains any Rexx Trace statements, the results of these statements will be
written to macro.out instead of to the screen.

IMPORTANT NOTE: If debugging and using interactive tracing, i.e. the Trace ? format, it is
possible to cause the session to hang if an invalid Rexx statement is issued. This is a known
problem; unfortunately there is no known solution at present.

EXTRACT Command

The EXTRACT command is particularly useful for gaining access to editor variables from
macros. If an Extract command is successful, it will set the results in Rexx stem variables. In
all cases, stem.0 contains the number of variables set. Use the following syntax:

 EXTRACT /opt/

The table below contains a list of all the available Extract options and the variables they will
set. The possible return codes are:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

Macro Debugging 89

15
No file left in edit ring

Extract Options

This table shows all the available Extract options, and the Rexx variables which will be set in
response to the Extract command.

Option Variable Contents

ALT

ALT.0
ALT.1

ALT.2

The number of variables returned (2)
The number of changes made since the
last autosave
The number of changes made since the
last save

APIFILE
APIFILE.0
APIFILE.1

The number of variables returned (1)
The APIFile name for the current file

AUTOSAVE
AUTOSAVE.0
AUTOSAVE.1

The number of variables returned (1)
The autosave value

BOOKMARK
BOOKMARK.0
BOOKMARK.n

The number of variables returned
The nth bookmark in line,column format,
or 0,1 if undefined

CD
CD.0
CD.1

The number of variables returned (1)
The current directory

CMDLINE
CMDLINE.0
CMDLINE.1

The number of variables returned (1)
1 if the command line is active, or 0 if
the cursor is in the file.

CODE_TYPE

CODE_TYPE.0
CODE_TYPE.1

The number of variables returned (1)
The code type, as inferred from the
filetype. Possible values are ASM,
BASIC, C, HELP, NETREXX, REXX, SCRIPT,
and NONE.

COLOUR
areaname

COLOUR.0
COLOUR.1
COLOUR.2
COLOUR.3

The number of variables returned (3)
The colour area name
The foreground colour
The background colour

COLOURS
COLOURS.0
COLOURS.n

The number of variables returned
The nth colour definition, in the format
areaname foreground ON background

COMMENTS

COMMENTS.0
COMMENTS.1

COMMENTS.2
COMMENTS.3

The number of variables returned (3)
The comment prefix string defined in
the user profile.
The comment suffix string.
The quick comment string.

CURLINE CURLINE.0
CURLINE.1

CURLINE.2

CURLINE.3
CURLINE.4
CURLINE.5

The number of variables returned (7)
The contents of the current file line,
with nulls converted into the null_char
1 if the line is visible, or 0 if it
is hidden.
The number of hidden lines
The shadow text for the current line.
1 if the line is an error line, 0 if

Extract Options 90

CURLINE.6

CURLINE.7

not.
Up to 40 characters of the line in
hexadecimal format
1 if a popup window is active, or 0
otherwise

CURSOR

CURSOR.0

CURSOR.1
CURSOR.2
CURSOR.3

CURSOR.4

CURSOR.5

The number of variables returned (4 or
5)
The cursor row in the file.
The cursor column in the file.
1 if the line is visible, or 0 if it
is hidden.
1 if the column is visible, or 0 if
it is hidden.
The numeric offset from the beginning
of the file if hex display is on.

ESCAPE
ESCAPE.0
ESCAPE.1

The number of variables returned (1)
The escape character.

EXT
EXT.0
EXT.1

The number of variables returned (1)
The current file extension

FIELDTEMPLATE
FIELDTEMPLATE.0
FIELDTEMPLATE.1

The number of variables returned (1)
The field template for the current file

FILEINFO

FILEINFO.0
FILEINFO.1
FILEINFO.2
FILEINFO.3
FILEINFO.4
FILEINFO.5

FILEINFO.6
FILEINFO.7
FILEINFO.8
FILEINFO.9

FILEINFO.10
FILEINFO.11
FILEINFO.12
FILEINFO.13
FILEINFO.14
FILEINFO.15

The number of variables returned (15)
The current file name
The number of lines in the file
The current file alteration count
The current file autosave count
The current edit mode, "BROWSE" or
"EDIT"
The current syntax filetype
The current file WRAP setting
The current file SHADOW setting
The current file bookmark numbers. If
there are too many bookmarks to fit
into the available space (80 bytes),
then the list will be truncated.
The current file comment markers
The current file cursor position
The current file margins
The current file tab settings
The current file code type
"NEW" if the file is new, "OLD"
otherwise

FILENAME
FILENAME.0
FILENAME.1

The number of variables returned (1)
The name of the currently edited file.

FIND

FIND.0
FIND.1
FIND.2
FIND.3

FIND.4

FIND.5

FIND.6

The number of variables returned (5)
The text of the find string(s)
The find arguments
The name of the file containing the
last match. Set to "" at editor
initialisation time, and if the file
is quit.
The row number of the last successful
match
The column number of the last
successful match
The string that was found

Extract Options 91

FLSCREEN FLSCREEN.0
FLSCREEN.1

FLSCREEN.2

The number of variables returned (2)
The line number of the first line
displayed on the screen.
The line number of the last line
displayed on the screen.

FT

FT.0
FT.1

The number of variables returned (1)
The current syntax filetype. This
is either the file extension or the
result of the FT command. It will
always be upper case in order to
allow easier comparison operations
in macros.

FUNCTION

FUNCTION.0
FUNCTION.1

FUNCTION.2

The number of variables returned (2)
The text of the current function
definition line.
The line number of the current
function.

HELPFILE
HELPFILE.0
HELPFILE.1

The number of variables returned (1)
The help file name

INSERT
INSERT.0
INSERT.1

The number of variables returned (1)
1 if the cursor is in INSERT mode, or 0
if it is in overstrike (REPLACE) mode.

KEY keyname

KEY.0
KEY.1

The number of variables returned (1)
The current setting for keyname, where
keyname is any key that may be modified
through the user profile.

KEYPRESS

KEYPRESS.0
KEYPRESS.1

The number of variables returned (1)
The name of the next depressed key.
Will wait until the user presses a key
before returning.

LASTMSG
LASTMSG.0
LASTMSG.1

The number of variables returned (1)
The last displayed message

LINE <n>

LINE.0
LINE.1

LINE.2

LINE.3
LINE.4
LINE.5

LINE.6

LINE.7

The number of variables returned (7)
The contents of the file line n,
where n defaults to the current line
1 if the line is visible, or 0 if it
is hidden.
The number of hidden lines
The shadow text for the line.
1 if the line is an error line, 0 if
not.
Up to 40 characters of the line in
hexadecimal format
1 if a popup window is active, or 0
otherwise

LINECOLOUR LINECOLOUR.0

LINECOLOUR.x

The number of variables returned,
which varies according to the number
of line segments in the line
The highlighting attributes for a line
segment, in the format start_col end_col
index, where start_col is the starting
column number, end_col is the ending
column number, and index is an index
to the extract /colours/ array. If the
linecolour command has been used on the
current line, index is replaced by

Extract Options 92

the fg on bg format.

LINEFIELDS
LINEFIELDS.0
LINEFIELDS.1

The number of variables returned (1)
The line fields for the current line

LINEND
LINEND.0
LINEND.1

The number of variables returned (1)
The current LINEND setting, and the
LINEND character

MARGINS

MARGINS.0
MARGINS.1
MARGINS.2
MARGINS.3
MARGINS.4

The number of variables returned (4)
The left file margin
The right file margin
The left paragraph formatting margin
The right paragraph formatting margin

MARK

MARK.0

MARK.1
MARK.2
MARK.3
MARK.4

MARK.5

MARK.6

MARK.7

The number of variables returned. 0 if
there is no mark, or 7 if a mark exists.
The marked file name.
The first marked line number.
The last marked line number.
The first marked column number. This
will be 0 if the mark is a line mark.
The last marked column number. This
will be 0 if the mark is a line mark.
1 if the marked file is the current
file, or 0 otherwise.
1 if the mark is a word mark, or 0
otherwise.

MARKTEXT

MARKTEXT.0

MARKTEXT.x

The number of variables returned, which
equals the number of visible marked lines
The contents of the Nth marked line.
If the mark is a block mark, only the
marked portion of the line is returned.

MSGMODE
MSGMODE.0
MSGMODE.1

The number of variables returned (1)
The current MSGMODE setting.

NAME
NAME.0
NAME.1

The number of variables returned (1)
The name of the currently edited file.

OS

OS.0
OS.1

OS.2
OS.3
OS.4

The number of variables returned (4)
The operating system name − "OS/2",
"Windows NT", "Windows 95", "AIX",
"Linux", "SunOS", or "HP−UX"
The operating system version
The directory path separator character
The separator character between
multiple paths

PFLINE
PFLINE.0
PFLINE.1

The number of variables returned (1)
The current PF display text when no
shift keys are active.

RING

RING.0

RING.1

RING.n

The number of variables returned,
which is also the number of files
in the edit ring.
The first file in the ring, which
is also the current file.
The nth file in the ring

SCREEN
SCREEN.0
SCREEN.1
SCREEN.2

The number of variables returned (2)
The number of rows in the screen
The number of columns in the screen

SHADOW SHADOW.0 The number of variables returned (1)

Extract Options 93

SHADOW.1 ON if the SHADOW setting is ON, or
OFF if it is OFF.

SHADOWTEXT

SHADOWTEXT.0

SHADOWTEXT.1

The number of variables returned (0
or 1)
The shadow text for the current line,
if set.

SIZE
SIZE.0
SIZE.1

The number of variables returned (1)
The number of lines in the current file

STATUSTEXT
STATUSTEXT.0
STATUSTEXT.1

The number of variables returned (1)
The statustext template for the current
file

TABS
TABS.0
TABS.1

The number of variables returned (1)
The tab settings for the current file

VERSION
VERSION.0
VERSION.1

The number of variables returned (1)
The editor version number

WRAP
WRAP.0
WRAP.1

The number of variables returned (1)
ON if the WRAP setting is ON, or
OFF if it is OFF.

X2PATH
X2PATH.0
X2PATH.1

The number of variables returned (1)
The XPATH/X2PATH setting

Locate Text

To search for text in a file, use the L command. This command has the following syntax:

 <L <~>/text</< |/& <~>/text2/> −mecflqs>

where:

L
Indicates the locate command. May be omitted if the search delimiter character is a
slash (/).

~
Indicates negation. If specified, lines that do not contain text will be found.

/
The search delimiter. This character marks the beginning of the search string. If it
occurs twice in the search string, the second occurrence marks the end of the search
string.

text
The text to search for.

text2
An optional second string to search for. If the two strings are separated by an OR
character (|), the next occurrence of either text or text2 will be found in the file. If
the two strings are separated by an AND character (&), the next line containing
both text and text2 will be found.

−mecflqs
Search options
−

Backwards search

Locate Text 94

m
Only scan marked area for text or text2

e
Case must match exactly

c
Case−insensitive search (the default)

f
text must be located at the beginning of a line

l
text must be located at the end of a line

q
Don't highlight search result

s
Symbol search. The target cannot be part of another word

The l option is useful when used with the m option for locating blank lines. If a block mark is
set in column one of the file, the following command will locate the next blank line in the
file:

 L // lm

When specifying search text, either normal ASCII characters may be used, or a hexadecimal
representation may be used. When specifying search strings in hex, use the following syntax:

 'hhhh'x

The following rules apply to hex strings:

They must be delimited with single quote (') marks ◊
The second quote must be immediately followed by the character 'x' or 'X' ◊
There must be an even number of digits ◊
Each digit must be in the range 0−9 or A−F ◊

The following return codes may be received from the Locate command:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

7
Target not found

15
No file left in edit ring

Change Text

To change the text in a file, use the C command. This command has the following syntax:

 C /from/to</ mecflps*N>

Change Text 95

where:

/
The search delimiter. This character marks the beginning and end of the search and
replacement strings.

from
The text to search for. The text may be specified in hex notation, see Locate Text for
details.

to
The replacement text. The text may be specified in hex notation, see Locate Text for
details.

mecflps*N
Options
m

Only scan marked area for from
e

Case must match exactly
c

Case−insensitive search (the default)
f

from must be located at the beginning of a line
l

from must be located at the end of a line
p

Preserve case. If from is all upper case, the replacement string will be
converted to upper case. If from is all lower case, the replacement string will
be converted to lower case. If from contains both upper and lower case
letters, it will be replaced by to directly.

s
Symbol search. The target cannot be part of another word

*
Change all occurrences from the current position to the bottom of the current
file

N
Change the next N number of occurrences from the current position to the
bottom of the current file, without prompting for change confirmation

If the * (change all) option is not used, the first occurrence of from will be found and a
message asking Yes/No/Last/Go/Quit/Abort will be displayed. After the first change an
additional option of Undo will be present. Press the first letter of the option you wish, where
the options are as follows:

Yes
Make the change and proceed to the next occurrence of from

No
Skip this item and proceed to the next occurrence of from

Last
Make the change and terminate the change command

Go
Change the remaining occurrences of from into to without further prompting

Quit

Change Text 96

Terminate the change command without changing the current occurrence of from.
The file position will be restored to its original position. The same result will occur if
you press the Escape key in response to the prompt.

Abort
Terminate the change command without changing the current occurrence of from.
The cursor remains at its current (new) position.

Undo
Undo the previous change and position the cursor at the previous occurrence of from.

The following return codes may be received from the Change command:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

7
No changes made

12
File is read only

15
No file left in edit ring

Popup Windows

The X2 Editor provides several facilities for the macro writer to communicate with the user;
one of the most useful ways is through popup windows. Popup windows are defined as
windows which appear in the middle of the editor screen to display information and receive a
response. The X2 Editor provides the following types of popup windows:

List Box◊
Message Box◊
Prompt◊
Password Prompt◊

List Box

You can display a list of items for user selection or reference. This type of popup is the most
complicated, and typically uses several commands to set up and display the window. These
are:

WINDOW◊
Used to initialise the window's size, title, and the expected number of entries in the
list
SETRESULT◊
Used to set the Rexx variable result; see below for an example of how to use this
command with popup windows
WINLINE◊
Adds a line of text to a window
WINSORT◊

Popup Windows 97

Sorts the window lines
WINWAIT◊
Displays the window and waits for user response

The following example displays a popup window and waits for user response. If a line is
selected, the macro is re−invoked with a parameter which determines subsequent action. This
old method of using popup windows is a bit cumbersome and difficult to follow, as it
requires the macro to be invoked twice and parameters must be passed between the two
invocations.

 /* */
 Parse Source os invoke sourcefn .
 Parse Var sourcefn sourcefn '.' .
 Parse Arg opt .
 Select
 When opt = 'One'
 Then 'MESSAGEBOX You selected line 1'
 When opt = 'Two'
 Then 'MESSAGEBOX You selected line 2'
 Otherwise Do
 'WINDOW 2 40 2 Test Window'
 'WINLINE Line 1\nMACRO' sourcefn 'One'
 'WINLINE Line 2\nMACRO' sourcefn 'Two'
 End
 End
 Exit

The next example uses SETRESULT and WINWAIT to improve the logic flow of the macro.
WINWAIT causes the window to be displayed while the calling macro is still active; when a
user selects an entry the variable result will be set to a parameter which can be used further
down in the program.

 /* */
 'WINDOW 2 40 2 Test Window'
 'WINLINE Line 1\nSETRESULT One'
 'WINLINE Line 2\nSETRESULT Two'
 'WINWAIT'

 Select
 When result = 'One'
 Then 'MESSAGEBOX You selected line 1'
 When result = 'Two'
 Then 'MESSAGEBOX You selected line 2'
 Otherwise Nop /* User probably escaped*/
 End
 Exit

Message Box

A message box is used simply to provide information to a user, and optionally to retrieve a
single key in response. The example below shows a message box which displays the text
"Hello" centred on line one, and "World" left−aligned on the second line. The return code
will be non−zero if the user presses escape, and the key they pressed is returned in the special
Rexx variable result.

Message Box 98

 /* */
 'EXTRACT /ESCAPE/'
 'MESSAGEBOX Hello' || escape.1 || 'NWorld'
 'MSG Messagebox return code was' rc 'and the result was' result

Prompt

A prompt is a special kind of message box, where space is provided for the user to enter text
as a response. The response is returned in the Rexx variable result.

 /* */
 'PROMPT Please enter your name'
 If rc = 0
 Then 'MSG Hello' result

In a prompt window, the Tab key acts as it does on the command line: the previous word on
the line is expanded to a filename from disk.

Password Prompt

Use the password command to retrieve information from the user, but not display it on the
screen. Instead of echoing the user input inside the message box, asterisks are used as
placeholders. Just like the Prompt command, the response is returned in the Rexx variable
result.

 /* */
 'PASSWORD Please enter your password'
 If rc = 0
 Then 'MSG You can trust me with' result

Editor Commands

This section contains a description of all commands available from the command line. Some
of these commands are only really useful from macros, although all can be issued from the
editor command line. Many are not available in the DOS version to save on space. These are
detailed in Differences in the DOS Version.

ACCENT

Syntax: ACCENT [ACUTE CEDILLA CIRCONFLEX GRAVE TILDE TREMA
UMLAUT]

Description: Input an accented character. This command prompts the user for a key (one of
aeiouAEIOUcCnN and space, depending on the option), and enters the appropriate accented
letter. This command is only supported under Windows, and is intended to be assigned to a
key, usually an AltGr key on an NLS−enabled keyboard.

Default Key: none

Prompt 99

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

ADD

Syntax: ADD

Description: Add a column of marked numbers

Default Key: a−padplus

Return Codes:

0
Successful completion

15
No file left in edit ring

ALL

Syntax: ALL </text</ +−mecfls~>

Description: Display only those lines which contain text.

Options:

+
Add lines to current display

−
Subtract lines from current display

m
Only scan marked area for text

e
Case must match exactly

c
Case−insensitive search

f
text must be located at the beginning of a line

l
text must be located at the end of a line

s
Symbol search. The target text cannot be part of another word

ADD 100

~
Reverse the current include/exclude settings. If specified it must be the first and only
parameter, i.e. text must be omitted.

Default Key: c−u

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

7
No matches found

15
No file left in edit ring

ALT

Syntax: ALT altcount <chgcount>

Description: Set the alteration count(s) for the file. altcount specifies the number of changes
since the last autosave. chgcount, if specified, is the number of changes since the last save. If
chgcount is 0, QUIT will exit the file without confirming potential data loss. Otherwise, the
file is assumed to have been modified and the QUIT function will ask for confirmation.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

APPEND

Syntax: APPEND fn

Description: Appends all visible lines in the current file to the supplied fn. Any lines which
have been excluded from the display are not copied to the new file. If a mark exists in the
current file, only visible lines in the marked area are copied.

Default Key: none

ALT 101

Return Codes:

0
Successful completion

15
No file left in edit ring

ASCII

Syntax: ASCII

Description: Escape to enter characters in ASCII mode.

Default Key: a−x

Return Codes:

0
Successful completion

15
No file left in edit ring

AUTOBOOKMARK

Syntax: AUTOBOOKMARK

Description: Move to an automatic bookmark position. Displays a window showing all the
automatic bookmarks for selection − selecting an item will move the cursor to that position
in the current file. Note that automatic bookmarks must be turned on in the profile, see
Automatic Bookmarks.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

AUTOSAVE

Syntax: AUTOSAVE <n>

Description: Set the autosave value for the file. Every time the alteration count reaches this
value, the file will be automatically saved to a temporary file on disk. The temporary
filename is the same as the current filename, except that the extension is replaced with the

ASCII 102

first value from (000, 001, 002, ..., 009) that will create a unique filename. If n is 0, the file
will never be auto−saved. If n is omitted entirely, the file will be autosaved immediately.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

BACKSPACE

Syntax: BACKSPACE

Description: Move the cursor one position to the left, and delete the character in the new
position. If the cursor is positioned on the first file column, the current line will be joined
with the previous line and the cursor moved to the intersection point.

Default Key: backspace

Return Codes:

0
Successful completion

15
No file left in edit ring

BACKTAB

Syntax: BACKTAB

Description: Move the cursor to the previous tab position

Default Key: backtab

Return Codes:

0
Successful completion

15
No file left in edit ring

BACKSPACE 103

BACKWARD

Syntax: BACKWARD

Description: Scroll the screen a full page towards the top of file. The cursor position on the
screen will be unchanged, unless the first page is reached.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

BOOKMARK

Syntax: BOOKMARK <n1 <n2<,n3>> SET GO PUSH>

Description: Set or move to a bookmark position. n1 specifies the bookmark number. If n2 is
specified, it indicates the new line setting for the bookmark; otherwise, the cursor will be
moved to the bookmark number n1. If n3 is also specified, it indicates the new column
setting for the bookmark. If n3 is not specified, the column defaults to column 1.

If no parameters are supplied, or the SET parameter is used, a bookmark will be set at the
current cursor position. Note that if quickmarks are on the first bookmark is set; if multiple
bookmarks are allowed, a window is displayed to prompt for the bookmark number.

The GO parameter moves the cursor to a previously saved bookmark. If more than one
bookmark is allowed, the user is prompted to select the correct bookmark number from a list
of set bookmarks.

The PUSH option forces quickmarks behaviour; the current cursor position is added to
bookmark number 1, and the remaining bookmarks are pushed down the stack.

Default Keys: c−b, c−g

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

22
No bookmarks defined

BACKWARD 104

BOTTOM

Syntax: BOTTOM

Description: Move to the bottom line of the file

Default Key: c−end

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

BOTTOMSCREEN

Syntax: BOTTOMSCREEN

Description: Move to the bottom line of the screen

Default Keys: c−pgdn, a−down

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

BROWSE

Syntax: BROWSE <ON OFF>

Description: Turn the browse setting on or off. If no parameters are specified, the browse
setting is toggled.

Default Key: none

Return Codes:

0
Successful completion

BOTTOM 105

15
No file left in edit ring

C, CHANGE

Syntax: C /from/to</ mecflps*N>

Description: Change occurrences of from into to. See Change Text for details.

Default Key: none

Return Codes: See Change Text

CASECHAR

Syntax: CASECHAR <UPPER LOWER>

Description: Change the case of the current character to UPPER or lower, depending on the
parameter, and move the cursor one position to the right. The default parameter is UPPER.

Default Key: c−up, c−down

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

CASEWORD

Syntax: CASEWORD

Description: Rotate the case of the current word, through UPPER, Mixed, and lower. If the
cursor is on a non−alphanumeric character, the case of the previous word will be changed,
unless the cursor is at or near the beginning of the line, in which case the next word will be
changed.

Default Key: c−f10

Return Codes:

0
Successful completion

15

C, CHANGE 106

No file left in edit ring

CD

Syntax: CD <d:\path>

Description: Change the current drive and directory for subsequent commands. If d: is
omitted, the drive remains the same. If path is omitted, the current directory for the new drive
will be used. If both are omitted, the current directory information will be displayed. The
original directory information will be restored upon editor termination.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

CENTRELINE

Syntax: CENTRELINE

Description: Centre the current row on the screen.

Default Key: s−f5

Return Codes:

0
Successful completion

15
No file left in edit ring

CENTRETEXT

Syntax: CENTRETEXT

Description: Centre text on the current line between the comment margins, or between the
mark if the line is marked with a block mark.

Default Key: a−t

Return Codes:

CD 107

0
Successful completion

15
No file left in edit ring

CHANGES

Syntax: CHANGES

Description: Display only those lines which have been changed in this editing session

Default Key: none

Return Codes:

0
Successful completion

7
No changed lines found

15
No file left in edit ring

CLIP

Syntax: CLIP <COPY CUT PASTE <BLOCK>>

Description: Manipulate the clipboard on 32 bit Windows or Unix systems. Options:

COPY
Copy the marked area to the clipboard. The file is not changed.

CUT
The same as COPY, but delete the marked area after successful copy to the
clipboard.

PASTE <BLOCK>
Copy any lines that may be in the clipboard into the current file. Lines are inserted
after the current cursor position by default, but will be inserted into existing lines
with the BLOCK option.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

6
No mark defined

CHANGES 108

15
No file left in edit ring

18
Utilities DLL not loaded

19
No data in clipboard

CMDLINE

Syntax: CMDLINE <TOP BOTTOM>

Description: Set the command line position to either the top or the bottom of the screen,
where TOP is the system default. If no parameter is provided, the command line setting
alternates between TOP and BOTTOM. To change the default through the user profile, see
Command Line Location.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

CMDTEXT

Syntax: CMDTEXT text

Description: Display text on the command line and position the cursor at the end of text.

Default Key: f6

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

COMMAND

Syntax: COMMAND internal command

CMDLINE 109

Description: Execute an internal command, but bypass any possible synonym or macro
resolution.

Default Key: none

Return Codes: From internal command

COMMENTLINE

Syntax: COMMENTLINE <FULL <c> EMPTY> <INDENT>

Description: Input a block comment line. The default FULL option fills the line with
asterisks, while the EMPTY option contains blanks. The optional parameter c will fill the line
with the character c. The optional parameter INDENT will cause the comment line to be
inserted with the same indentation as the current line.

Default Keys: a−7, a−8

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

COMMENT_STYLE

Syntax: COMMENT_STYLE <ALIGN_QUICK COLSTART CONVERT_ALLQUICK
CONVERT_QUICK CPP_CONDITIONAL C_CONDITIONAL IF_MODIFIED
KEEP_BLANKS LEFT NO_BLOCKS RIGHT UPPERCASE>

Description: Modify the automatic comment formatting style. For a complete description of
the various options, refer to Inline Comment Formatting Control.

Default Key: c−c

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

COMMENTLINE 110

COMPARE

Syntax: COMPARE <DIFF SYNC MERGE>

Description: Compare two files. The DIFF option stops the cursor at the first non−matching
lines, and is the default. The SYNC option will try to re−synchronise the files to common
lines. The MERGE parameter copies differing lines from the current file to the next file in
the ring, until a set of matching lines is found.

Default Keys: a−f2, a−f3, a−f4

Return Codes:

0
Successful completion

−6
Invalid parameter

7
No matching lines found (SYNC option)

11
No differing lines found

15
No file left in edit ring

CONDITIONAL

Syntax: CONDITIONAL <IF ELSE END>

Description: Input conditional compilation IF, ELSE, or END command. The default values
are #if 0, #else, and #endif respectively. Conditional strings may be set in the user profile
with the CONDITIONALS keyword.

Default Key: a−0

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

COPYLINE

Syntax: COPYLINE

COMPARE 111

Description: Copy the current line. The new line is inserted immediately following the
current line.

Default Key: c−k

Return Codes:

0
Successful completion

15
No file left in edit ring

COPYTOCMD

Syntax: COPYTOCMD

Description: Copy the current line's text to the command line. If a block mark exists on the
current line, just that portion of the line will be copied.

Default Key: c−l

Return Codes:

0
Successful completion

15
No file left in edit ring

COUNT

Syntax: COUNT /text</< |/& /text2/> −mecfls>

Description: Count the number of occurrences of the target string(s). See Locate Text for
details on specifying options.

Default Key: none

Return Codes:

0 or greater
Successful completion. The value returned is the number of occurrences found.

−6
Invalid parameter

15
No file left in edit ring

COPYTOCMD 112

CURR_ALT_PFLINE

Syntax: CURR_ALT_PFLINE text

Description: Use the new text for the PF display line when the Alt key is active, but only for
the current file.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

CURR_CTRL_PFLINE

Syntax: CURR_CTRL_PFLINE text

Description: Use the new text for the PF display line when the Ctrl key is active, but only for
the current file.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

CURR_PFLINE

Syntax: CURR_PFLINE text

Description: Use the new text for the PF display line when no shift keys are active, but only
for the current file.

CURR_ALT_PFLINE 113

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

CURR_SHIFT_PFLINE

Syntax: CURR_SHIFT_PFLINE text

Description: Use the new text for the PF display line when the Shift key is active, but only
for the current file.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

CURSOR

Syntax: CURSOR <+|−>row <<+|−>col> BEGMARK CMDLINE COL1 <STAY> DATA
ENDMARK EOL <STAY> NEXTLINE TOGGLE

Description: Move the cursor to the row and column specified. If a plus or minus sign is
specified, the offset will be relative from the current cursor position. Instead of numeric
parameters, one of the following words may be specified:

BEGMARK
Move the cursor to the beginning of the marked area

CMDLINE
Move the cursor to the command line

COL1 <STAY>
Move the cursor to the first column of the command line. If it is already in column 1,

CURR_SHIFT_PFLINE 114

move it to column 1 of the previous line, unless STAY is specified.
DATA

Move the cursor to the data area
ENDMARK

Move the cursor to the end of the marked area
EOL <STAY>

Move the cursor to the end of the current line. If it is already at the end of the line,
move it to the end of the next line, unless STAY is specified.

NEXTLINE
Move the cursor to the beginning of the next file line. If enter_insert is set to ON in
the user profile, a new line will be inserted if insert mode is also ON.

TOGGLE
Toggle the cursor between the command line and the data area

Default Keys: end, enter, home, a−e, a−y

Return Codes:

0
Successful completion

−6
Invalid parameter

9
Cursor at TOF/EOF line

10
The cursor was not moved

15
No file left in edit ring

16
Target line is hidden

DATE

Syntax: DATE EUROPEAN LONG ORDERED SORTED USA

Description: Input the current date into the file at the current cursor location. The option
controls the date format:

European
Input the date in dd/mm/yy format, e.g. 31/07/96

Long
Input the date in long format, e.g. July 31, 1996

Ordered
Input the date in yy/mm/dd format, e.g. 96/07/31

Sorted
Input the date in yyyymmdd format, e.g. 19960731

Usa
Input the date in mm/dd/yy format, e.g. 07/31/96

DATE 115

The Sorted and Long options return a four digit year. Under Windows and Unix systems, the
century is calculated from a two digit year: if the system year is less than 50 the 21st century
is assumed; otherwise the 20th century is returned. This code is only available in versions
1.98 Beta D and above.

Default Keys: a−f9, c−f9

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

DELCHAR

Syntax: DELCHAR

Description: Delete the current character at the cursor position.

Default Key: Del

Return Codes:

0
Successful completion

15
No file left in edit ring

DELDUPES

Syntax: DELDUPES <C E>

Description: Remove all duplicate lines from a file. If there is a marked area in the current
file, the search is restricted to the marked lines. If the mark is a block mark, the search is
further restricted to the marked columns within the block. If the C parameter is used, case is
ignored when comparing lines. The E (exact case match) parameter is the default.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

DELCHAR 116

15
No file left in edit ring

DELETE

Syntax: DELETE <N *>

Description: Delete the current line from the file. If N is supplied, the given number of lines
will be deleted. If N is an asterisk (*), all lines from the current line to the end of file will be
deleted.

Default Key: c−backspace

Return Codes:

0
Successful completion

9
Cursor at TOF/EOF line

15
No file left in edit ring

DELSYM

Syntax: DELSYM

Description: Delete the current symbol from the cursor position to the beginning of the next
punctuation. If the cursor is on a punctuation mark, this function will delete all punctuation
up to the next symbol.

Default Keys: none

Return Codes:

0
Successful completion

15
No file left in edit ring

DELWORD

Syntax: DELWORD

Description: Delete the current word from the cursor position to the beginning of the next
word

Default Keys: c−d, c−del

DELETE 117

Return Codes:

0
Successful completion

15
No file left in edit ring

DIAG

Syntax: DIAG

Description: Output diagnostics into a file called .XDIAG. The output file consists of the
following main sections:

Edit Environment
General information about the editor's configuration, global settings, and
environment

Key Definitions
All major keys and their current definitions, including both default and modified
keys

Files in Ring
An entry for each file in the ring, including file specific settings and file memory use

Marked Text
Information about the marked area, if any

Allocated Memory
A summary of the total memory use by the editor

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

18
Utilities DLL not loaded

DOWN

Syntax: DOWN <N *>

Description: Move the cursor down one row. If N is supplied, the cursor will be moved the
given number of lines. If N is an asterisk (*), the cursor will be moved to the last line of the
file.

Default Key: down

DIAG 118

Return Codes:

0
Successful completion

−6
Invalid parameter

9
Cursor at TOF/EOF line

10
The cursor was not moved

15
No file left in edit ring

16
Target line is hidden

DUPLICATES

Syntax: DUPLICATES <DELETE ALL EXCLUDE> <C E>

Description: Work with duplicate lines in the current file:

DELETE
Delete all duplicate lines. This option, the default, is identical to the
DELDUPES command.

ALL
Show only duplicate lines. Any lines having no duplicate will be excluded from the
display.

EXCLUDE
Hide all duplicate lines. Any lines having at least one duplicate will be excluded
from the display.

If there is a marked area in the current file, the search is restricted to the marked lines. If the
mark is a block mark, the search is further restricted to the marked columns within the block.
If the C parameter is used, case is ignored when comparing lines. The E (exact case match)
parameter is the default.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

DUPLICATES 119

E, EDIT, X

Syntax: EDIT <fn1 fn2...> <options>

Description: Add the specified file(s) to the edit ring. See Invoking The Editor for details on
options and file name syntax.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−2
Unable to open the file

−3
Unable to read the file

1
New file

2
Line(s) split

13
Invalid path

EA

Syntax: EA <ON OFF>

Description: Turn the saving of editor information with extended attributes on or off. If no
parameters are specified, the EA setting is toggled.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

EOF_TEXT

Syntax: EOF_TEXT text

Description: Change the text used to mark the end of the current file

E, EDIT, X 120

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

ERASEEOL

Syntax: ERASEEOL

Description: Erase the current line from the cursor position.

Default Key: c−e

Return Codes:

0
Successful completion

15
No file left in edit ring

ERRORS

Syntax: ERRORS <SHOW NEXT REMOVE>

Description: Handle compiler errors, where SHOW (the default) copies error lines from
fn.err into the current file, NEXT moves the cursor to the next error line, and
REMOVE removes all error lines from the current file. See Compiler Errors for more
information on creating and using compiler error files.

Default Keys: a−q, c−n, c−o

Return Codes:

0
Successful completion

15
No file left in edit ring

EXCLUDE

Syntax: EXCLUDE <N * TOGGLE AREA>

ERASEEOL 121

Description: Exclude the line(s) at the cursor position, with the following options:

N
Exclude the next N lines from the display, where N defaults to 1.

*
All lines from the current line to the End Of File will be excluded.

TOGGLE
The current line will be excluded if it is visible, or the lines represented by a shadow
line will be shown if the cursor is on a shadow line. Note that if SHADOW is ON, the
shadow line will count as one line excluded, no matter how many lines it represents.

AREA
Exclude from the current line, all lines with indentation greater than or equal to the
current line's indentation.

Default Keys: c−a, c−x

Return Codes:

0
Successful completion

−6
Invalid parameter

10
The cursor was not moved

15
No file left in edit ring

EXITRC

Syntax: EXITRC nnn

Description: Set the editor exit return code to nnn. This option is useful when calling the
editor from other environments, where a return code would be a handy way to communicate
some information from the editor back to the calling environment. The normal editor return
code is 0.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

EXITRC 122

EXPAND

Syntax: EXPAND

Description: This command is used to expand a few letters of a word into a longer word. If
invoked from the data area, it examines previously entered text to find a word that begins
with the text that is found at the cursor position. If found, the word at the cursor position is
replaced with the full word. Repeated presses of this key will provide alternative expansions
for the current word. Insert mode is always turned on for this operation, so no existing data
will be overwritten.

If this command is invoked from the command line, it will take the characters on the
command line and use them to fill the command line with the first matching command.

Default Key: a−=

Return Codes:

0
Successful completion

15
No file left in edit ring

EXT

Syntax: EXT <newext>

Description: If used with no parameter, the current file extension is displayed. If newext is
supplied, the file extension will be changed to newext.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

EXTRACT

Syntax: EXTRACT /opt/

Description: Gain access to editor information from a Rexx program. See EXTRACT
Command for details regarding the various options.

Default Key: none

EXPAND 123

Return Codes: See EXTRACT Command

FFILE

Syntax: FFILE <newname /CR /CRLF /CRCRLF /LF /NOEA /NOTABS /T /U>

Description: Save the currently edited file to disk. Exactly like the FILE command, only it
skips the check for a changed filename before saving. All options are described under the
SAVE command.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−2
Unable to open the file

−4
Unable to write the file

−10
Path not found

−11
Access denied (file attributes?)

12
File is read only

15
No file left in edit ring

FIELDTEMPLATE

Syntax: FIELDTEMPLATE <c1 [U P]> <c2 [U P]> ...

Description: Control default editing of all file lines, through definition of protected and
unprotected fields. See the LineFields command for syntax details.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

FFILE 124

FILE

Syntax: FILE <newname /CR /CRLF /CRCRLF /LF /NOEA /NOTABS /T /U>

Description: Save the currently edited file to disk. If newname is supplied, the file will be
saved under that name. Otherwise, the current name will be used. If the save was successful,
quit the file. All options are described under the SAVE command.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−2
Unable to open the file

−4
Unable to write the file

−10
Path not found

−11
Access denied (file attributes?)

1
File already exists

12
File is read only

15
No file left in edit ring

FIND_WORD

Syntax: FIND_WORD

Description: Search forwards in the current file for the word located at the cursor position. A
word is defined as containing only alphanumeric characters plus the underscore (_) character.
Any character which is not in the range A−Z and is non−numeric will be taken as the end of
the word for the search. The exception to this rule is the case of dates and times. Any string
of the format dd/dd/dd, where dd is a numeric digit and / is the system date separator, will be
taken as a "word". Similarly, any string in the format hh:mm:ss or hh:mm:ss.ttt will be taken
as a "word".

If the cursor is on the command line, the command line is replaced with a locate command
showing the current search string. This is useful if you want to make a small change to the
string without having to re−type most of it. A string delimiter is chosen from the set "/&$:\"
that is not part of the search string.

FILE 125

Default Key: c−w

Return Codes:

0
Successful completion

15
No file left in edit ring

FORWARD

Syntax: FORWARD

Description: Scroll the screen a full page towards the end of file. The cursor position on the
screen will be unchanged, unless the last page is reached.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

FT

Syntax: FT ext

Description: Treat the file for formatting purposes as if it had the supplied extension. All
syntax expansion and formatting keywords will be used for the pseudo extension.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

FUNCWIN

Syntax: FUNCWIN

Description: Display a popup window containing all functions in the current file.

FORWARD 126

Default Key: c−f11

Return Codes:

0
Successful completion

15
No file left in edit ring

GET

Syntax: GET filename

Description: Copy the supplied filename into the current file, starting at the current cursor
position. The file, which cannot contain wildcards, will not be added to the edit ring.

Default Key: none

Return Codes:

0
Successful completion

−2
File not found

−6
Invalid parameter

15
No file left in edit ring

HELP

Syntax: HELP

Description: Browse the help file

Default Key: f1

Return Codes:

0
Successful completion

15
No file left in edit ring

HEX

Syntax: HEX <ON OFF>

GET 127

Description: Turn Hex Display mode on or off. If no parameters are specified, the current
hex display setting is toggled.

Default Key: a−h

Return Codes:

0
Successful completion

15
No file left in edit ring

HIDEFILE

Syntax: HIDEFILE <ON OFF>

Description: Toggle the Hide setting for the current file, or with no parameters, the current
Hide setting is toggled. If Hidefile is ON, the file will become invisible in the ring, unless it
is explicitly called by name. Note that the file is automatically discarded when no visible
files are left in the ring, even if it has been modified.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

INPUT

Syntax: INPUT <text>

Description: Input a new line into the file, after the current cursor position. If text is supplied,
use that text for the new line.

Default Key: c−enter

Return Codes:

0
Successful completion

12
File is read only

15
No file left in edit ring

HIDEFILE 128

INPUT_ERRORLINE

Syntax: INPUT_ERRORLINE text

Description: Input a new line containing text into the file, after the current cursor position.
The new line will have error highlighting and will be read−only.

Default Key: none

Return Codes:

0
Successful completion

12
File is read only

15
No file left in edit ring

INSMODE

Syntax: INSMODE <ON OFF>

Description: Turn Insert mode on or off. If no parameters are specified, the current insert
mode setting is toggled. Insert mode is indicated with either Ins or Rep in the far right of the
status line.

Default Key: ins

Return Codes:

0
Successful completion

15
No file left in edit ring

JOIN

Syntax: JOIN

Description: Join the current line with the following line. If the cursor is after the end of the
current line the join occurs at the cursor position. Otherwise, the lines are joined with a single
space between them.

Default Key: a−j

Return Codes:

INPUT_ERRORLINE 129

0
Successful completion

15
No file left in edit ring

KEY

Syntax: KEY key = func

Description: Set the specified key to the given func, where func can be any command that
may be issued from the command line. The new key is in effect only for the current file; to
globally set a key use the user profile.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

KEYIN

Syntax: KEYIN text

Description: Enter the supplied text at the current cursor position. This function will not work
correctly if entered on the command line; it must be used from a key or a macro only. Note
that this command accepts and keeps trailing spaces.

Default Keys: padplus, a−1, a−2, a−3, a−4, a−5, a−6, a−9, a−−, a−\

Return Codes:

0
Successful completion

−6
Invalid parameter (no text supplied)

12
File or current line is read only

15
No file left in edit ring

KEY 130

KEYIN_NAME

Syntax: KEYIN_NAME

Description: Enter the current filename at the current cursor position.

Default Key: a−n

Return Codes:

0
Successful completion

−6
Invalid parameter (no text supplied)

12
File or current line is read only

15
No file left in edit ring

KEYS_PLAY, PLAYBACK

Syntax: KEYS_PLAY <N *>

Description: Play back a recorded key sequence. This allows a macro to execute the function
normally assigned to the Ctrl−T key. If N is supplied, the key sequence will be executed the
given number of times, unless it is interrupted by an abnormal key response. If N is an
asterisk (*), the key sequence will be executed until the cursor reaches either the Top Of File
line or the End Of File line, or until an abnormal key response. Recorded Key
Sequences contains more information about recording and playing back key sequences.

Default Key: c−t

Return Codes:

0
Successful completion

−6
Invalid parameter

9
Cursor at TOF/EOF line

15
No file left in edit ring

KEYS_RECORD

Syntax: KEYS_RECORD

KEYIN_NAME 131

Description: Initiate a sequence of recorded keys, which can be played back later with the
Keys_play command. Recorded Key Sequences contains more information about recording
and playing back key sequences.

Default Key: c−r

Return Codes:

0
Successful completion

15
No file left in edit ring

KEYS_WRITE

Syntax: KEYS_WRITE fn.x

Description: Translate the current recorded key sequence into the equivalent Rexx macro.
File fn.x will be added to the edit ring, and will contain skeleton Rexx code. This command is
useful for saving recordings for later playback, or for quickly generating the basis for a more
complicated macro.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

18
Utilities DLL not loaded

L, LOCATE

Syntax: L /text</< |/& /text2/> −mecflqs>

Description: Locate the supplied text. See Locate Text for details.

Default Key: none

Return Codes: See Locate Text

LINECOLOUR

Syntax: LINECOLOUR <c1 c2 [fg1 ON bg1 /name] c3 c4 fg2 ON bg2 ...>

KEYS_WRITE 132

Description: Control the colouring of the current line. Columns c1 through c2 are coloured
with foreground colour fg1 on a background of bg1, where foreground and background
colours are described in Colour Remapping. Alternatively, / syntax may be used to define
line colours. If a slash is followed by the name of an X2 colour area, e.g. DATA, then the
currently defined settings for that area will be used to display the given columns.

Multiple sets of columns and colours may be specified in a single command. No parameters
removes any previously specified line colouring for the current line. Note that explicitly
setting a line's colour overrides any syntax specific colouring that may be applied to a line.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

LINEFIELDS

Syntax: LINEFIELDS <c1 [U P]> <c2 [U P]> ...

Description: Control editing of the current line, through definition of protected and
unprotected fields. Everything from column c1 until the end of line or the next linefield will
be either Unprotected or Protected, depending on the parameter. The LINEFIELDS command
with no parameters will clear the setting for the current line.

A quick way to set default linefields for every file line is provided with the
FieldTemplate command. Note that the LINEFIELDS and FIELDTEMPLATE commands
are currently experimental, and may change or be removed in a future release.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

LINEMACRO

Syntax: LINEMACRO <MACRO whatever>

LINEFIELDS 133

Description: Set a macro which will be executed whenever the user tries to enter a character
on the current line. When a key is pressed, macro whatever will be called with the following
parameters:

 CHAR c rr nn mode b

where

c
is the new character

rr
is the current row number

nn
is the current cursor column

mode
is either "Ins" or "Rep"

b
is 0 if editing is allowed, or 1 either if the line is read only or if the entire file is in
browse mode

By default, if a linemacro is called for a line change, the line change will be suppressed. To
let the change proceed, use the EXITRC command to set the return code to a non−zero value.

To clear a linemacro from the current line, issue the LINEMACRO command with no
parameters.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

LINEND

Syntax: LINEND <ON OFF <c>>

Description: Turn the linend setting on or off. If no parameters are specified, the linend
setting is toggled. The default setting is ON. If c is specified, it becomes the new linend
character.

Default Key: none

Return Codes:

0
Successful completion

15

LINEND 134

No file left in edit ring

MA, MARGINS

Syntax: Margins <n1 <n2 <n3 <n4>>>>

Description: Set/query file margins. If no parameters are supplied, the current margins are
displayed. n1 through n4 represent the left and right file margins, and the left and right
comment alignment margins, respectively. n3 and n4 are also used as the margins for the
reformat command. The minimum allowable value for n4 is 20.

Default Key: none

Return Codes:

0
Successful completion

9
Cursor at TOF/EOF line

10
The cursor was not moved

−6
Invalid parameter

15
No file left in edit ring

MACRO

Syntax: MACRO macroname <parms>

Description: Execute the specified macroname. The macro must have a file extension of X,
although the extension is not specified on invocation. Any parameters which the macro may
expect are passed directly to the macro.

Default Key: none

Return Codes:

0
Successful completion

−3
Macro not found

Other
Numeric parameter passed to macro Exit statement

15
No file left in edit ring

MA, MARGINS 135

MARK

Syntax: MARK <option>

Description: Create or manipulate a text mark on the text at the current position. The
following options are available:

ADD
Add the column of numbers contained by the marked area, and insert the result at the
end of the marked block.

ALIGN <LEFT RIGHT>
Align text to the left or right edge of the marked area by removing all intervening
blanks. The default option is LEFT.

AREA
Mark the area starting at the current line and ending at the last line with the same or
greater indentation.

BLOCK <EXTEND>
Create a block mark. If the EXTEND parameter is omitted, any existing mark will be
cleared, unless it is a block mark spanning one character only. With the
EXTEND parameter, an existing block mark will be extended to the current position.
Existing line marks or marks in other files will be cleared regardless.

CLEAR
Remove any existing mark.

COL1
Mark from the cursor position to the beginning of the current line. The cursor will be
moved to the beginning of the line.

COPY
Copy the marked text to the current position.

DELETE
Delete the marked text from the file.

EOL
Mark from the cursor position to the end of the current line. If there is a comment on
the line, mark only the comment.

EXTEND [LEFT RIGHT UP DOWN]
Extend the current mark one character to the left, right, upwards, or downwards, and
move the cursor in the indicated direction.

FILL </c/>
Fill the marked area with the supplied character. If only one character is supplied, it
will be used to fill the mark, or if two or more characters are used the second
character will be used. If no characters are supplied, the user will be prompted for a
fill character.

INTEGERS
Input an ascending series of integers, one on each marked line. The starting integer is
taken from the first marked line; if it is missing or invalid, it will default to 1. The
output numbers will be padded with blanks so they are right aligned.

LINE <EXTEND>
Create a line mark. If the EXTEND parameter is omitted, any existing mark will be
cleared, unless it is a line mark spanning one line only. With the EXTEND parameter,
an existing line mark will be extended to the current position. Existing block marks
or marks in other files will be cleared regardless. MARK LINE is the default option.

MARK 136

LOWER
Convert the marked area to lower case text.

MERGE
Merge the marked area into the current position. Only target characters that are blank
will be replaced from the mark.

MIXED
Convert the marked area to mixed case text.

MOVE
Move the marked text to the current position. It will be deleted from its previous
position.

OVERLAY
Overlay the marked text onto the current position.

SHIFT <LEFT RIGHT>
Shift the marked text one column to the left or to the right, where RIGHT is the
default.

SYM
Mark the nearest symbol to the cursor, where a symbol consists only of the
alphanumeric characters, plus the underscore character.

UPPER
Convert the marked area to upper case text.

VERTICAL
Mark the vertical column of text that contains the cursor position.

WORD
Mark the nearest word to the cursor.

Default Keys: a−a, a−b, a−c, a−d, a−f, a−i, a−l, a−m, a−o, a−r, a−u, a−v, a−w, a−z, c−F3,
c−F4, c−F5, c−F7, c−F8

Return Codes:

0
Successful completion

−6
Invalid parameter

6
No mark defined

12
File is read only

14
Current line is blank

15
No file left in edit ring

MATCH

Syntax: MATCH

Description: Move the cursor to the equivalent string from the set of conditional strings,
brackets, and GML tags. See Conditional Strings.

MATCH 137

Default Key: c−y

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

MESSAGEBOX

Syntax: MESSAGEBOX text

Description: Display a window containing text. The window is dismissed after any keypress,
and the key pressed is set in the Rexx variable result.

The supplied text may include multiple output lines, by separating each line by a sequence
consisting of the escape character immediately followed by the letter N. The first line is
centred on the window; all subsequent lines are left justified.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

MSG

Syntax: MSG <text>

Description: Display text as an editor message. If text is omitted, any current message text
will be cleared.

Default Key: none

Return Codes:

0
Successful completion

MESSAGEBOX 138

15
No file left in edit ring

MSGMODE

Syntax: MSGMODE <ON OFF>

Description: Turn message display on or off. If no parameters are specified, the msgmode
setting is toggled. The default setting is ON. No information message is displayed when this
command is executed. If message mode is OFF, then all messages are suppressed, except for
messages that require a user response.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

NAME

Syntax: NAME <newname>

Description: Change the name of the current file. If newname is identified as a host file
name, the only modification to the supplied text is to convert it to upper case. If newname is
assumed to represent a PC file name, it will be formatted to a standard d:\path\fn.ext format.
If newname is not specified, the current file's name will be added to the command line.

The following criteria must all be met to identify a file as a host filename:

The first two characters must be alphabetic 1.
The third character must be a colon 2.
No backslash must be found in the name 3.

Possible host filenames are ha:PROFILE EXEC A and hb:myfiles.script(member).

Default Key: f5

Return Codes:

0
Successful completion

15
No file left in edit ring

MSGMODE 139

NEXT, NEXT_FILE

Syntax: NEXT, NEXT_FILE

Description: Make the next file in the edit ring the current file.

Default Key: f12

Return Codes:

0
Successful completion

15
No file left in edit ring

NEXT_ERROR

Syntax: NEXT_ERROR

Description: Move the cursor to the next compiler error line in the file.

Default Key: c−n

Return Codes:

0
Successful completion

7
No more error lines found

15
No file left in edit ring

NEXT_FUNC

Syntax: NEXT_FUNC

Description: Moves the cursor to the next function in the file.

Default Key: a−pgdn

Return Codes:

0
Successful completion

10
The cursor was not moved

15

NEXT, NEXT_FILE 140

No file left in edit ring

NEXT_PARA

Syntax: NEXT_PARA

Description: Moves the cursor to the next paragraph in the file.

Default Key: a−end

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

NEXT_SENTENCE

Syntax: NEXT_SENTENCE

Description: Moves the cursor to the beginning of the next sentence in the file.

Default Key: none

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

NEXT_SYM

Syntax: NEXT_SYM

Description: Moves the cursor to the next symbol in the file, where a symbol consists only of
the alphanumeric characters, plus the underscore character. If the cursor is past the end of the
current line, the cursor will be positioned under symbols in the preceeding line until the end
of that line is reached, at which point it will move to the first symbol in the next line.

Default Key: a−right

NEXT_PARA 141

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

NEXT_WORD

Syntax: NEXT_WORD

Description: Moves the cursor to the next blank−delimited word in the file. If the cursor is
past the end of the current line, the cursor will be positioned under words in the preceeding
line until the end of that line is reached, at which point it will move to the first word in the
next line.

Default Key: c−right

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

NOP

Syntax: NOP

Description: Null operation. Handy for disabling a key.

Default Keys: s−F6, s−F7, s−F8, s−F9, s−F10, s−F11, s−F12, s−del, s−ins, c−h, c−i, c−m,
c−q, c−z, c−[, c−], c−F1, c−ins, c−tab, a−g, a−k, a−[, a−], a−F1, a−F5, a−F6, a−F7, a−F8,
a−F10, a−F11, a−F12

Return Codes:

0
Successful completion

15
No file left in edit ring

NEXT_WORD 142

NUMFILES

Syntax: NUMFILES

Description: Displays the number of files in the edit ring on the message line.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

OPENFILE

Syntax: OPENFILE

Description: Open (edit) the file named on the current line.

Default Key: c−p

Return Codes:

0
Successful completion

15
No file left in edit ring

PAGEDOWN

Syntax: PAGEDOWN

Description: Scroll the screen towards the end of file. The line containing the cursor will
move to the top of the screen, unless the cursor is already at the top of the screen, in which
case a full page is scrolled.

Default Key: pgdn

Return Codes:

0
Successful completion

15
No file left in edit ring

NUMFILES 143

PAGEUP

Syntax: PAGEUP

Description: Scroll the screen towards the top of file. The line containing the cursor will
move to the bottom of the screen, unless the cursor is already at the bottom of the screen, in
which case a full page is scrolled.

Default Key: pgup

Return Codes:

0
Successful completion

15
No file left in edit ring

PASSWORD

Syntax: PASSWORD text

Description: Display a window with text as the title, and collect user input, but display
asterisks (*) in place of each input character. When the user presses the Enter key, the
response text will be copied into the Rexx variable result. If the user presses the Escape key,
result will not be set and the return code will be 17. The window will automatically resize
itself if the input spans more than one window line.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

17
User quit the function

PFLINE

Syntax: PFLINE text

Description: Use the new text for the PF display line when no shift keys are active.

PAGEUP 144

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

PRESSKEY

Syntax: PRESSKEY keyname

Description: Press the key named by keyname. Designed to be used in conjunction with the
EXTRACT /KEYPRESS/ command.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

PREVIOUS_FILE

Syntax: PREVIOUS_FILE

Description: Makes the previous file in the ring the current file.

Default Key: f11

Return Codes:

0
Successful completion

15
No file left in edit ring

PRESSKEY 145

PREVIOUS_FUNC

Syntax: PREVIOUS_FUNC

Description: Moves the cursor to the previous function in the file.

Default Key: a−pgup

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

PREVIOUS_PARA

Syntax: PREVIOUS_PARA

Description: Moves the cursor to the previous paragraph in the file.

Default Key: a−home

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

PREVIOUS_SYM

Syntax: PREVIOUS_SYM

Description: Moves the cursor to the previous symbol in the file, where a symbol consists
only of the alphanumeric characters, plus the underscore character.

Default Key: a−left

Return Codes:

0
Successful completion

PREVIOUS_FUNC 146

10
The cursor was not moved

15
No file left in edit ring

PREVIOUS_WORD

Syntax: PREVIOUS_WORD

Description: Moves the cursor to the previous blank−delimited word in the file.

Default Key: c−left

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

PROMPT

Syntax: PROMPT text

Description: Display a window with text as the title, and collect user input. When the user
presses the Enter key, the response text will be copied into the Rexx variable result. If the
user presses the Escape key, result will not be set and the return code will be 17. The
window will automatically resize itself if the input spans more than one input line.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

17
User quit the function

PREVIOUS_WORD 147

PUT

Syntax: PUT fn

Description: Puts all visible lines in the current file to the supplied fn. Any lines which have
been excluded from the display are not copied to the new file. If a mark exists in the current
file, only visible lines in the marked area are copied.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

QQ, QQUIT

Syntax: QQUIT

Description: Quit the current file without saving any changes. If the file contains changes,
you will not be warned that the changes will be lost.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

QUIT

Syntax: QUIT

Description: Quit the current file. If changes have not been saved, the following confirmation
message will be displayed:

 Throw away changes?

 Yes No Write

By default, the following responses are possible:

Y
Throw away all changes to the file and proceed with the Quit operation

PUT 148

N/Escape
Keep all changes and abort the Quit operation

W
Write the file to disk before quitting. If the write is unsuccessful, the Quit is aborted.

FILE key
Pressing any key assigned to the FILE function will cause the file to be written to
disk before quitting.

SAVE key
Pressing any key assigned to the SAVE function will cause the file to be written to
disk before quitting.

QUIT key
Pressing any key assigned to the QUIT function will cause the file to be removed
from the edit ring without any changes being saved.

Note that use of the FILE, SAVE, and QUIT keys in response to the confirmation message is
only supported if Rexx and the utilities DLL are available. These keys may be turned off in
the user profile; see Quit Response When File Modified.

Default Key: f3

Return Codes:

0
Successful completion

15
No file left in edit ring

REDO

Syntax: REDO

Description: Redo a line change that was previously undone with the Undo command.

Default Key: f10

Return Codes:

0
Successful completion

15
No file left in edit ring

20
End of undo stack

REFORMAT

Syntax: REFORMAT

REDO 149

Description: Reformat the paragraph beginning at the cursor position. If comment markers
are active for this file, the paragraph will be formatted with leading and trailing comment
markers. If the first line of text begins with a dash (−), the following lines will be indented to
align after the dash, and formatting will end at the next line which begins with a dash.
Otherwise, formatting will end at:

A blank line 1.
A read−only line 2.
A line containing no blank characters 3.
A line beginning with one of the highlight_tags strings 4.
Any line beginning with a colon (:) or period (.) 5.
End of File 6.

The beginning line is examined for leading indentation − all following text will be indented
the same as the current line, unless it begins with a dash.

Default Key: a−p

Return Codes:

0
Successful completion

9
Cursor at last file line

15
No file left in edit ring

REFRESH

Syntax: REFRESH

Description: Refreshes the screen. Necessary in some macros which don't happen to call
commands which will refresh the screen. This command also resets the video mode to avoid
screen blinking.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

RENAME

Syntax: RENAME

REFRESH 150

Description: Display text on the command line to rename the current file.

Default Key: f5

Return Codes:

0
Successful completion

15
No file left in edit ring

REPEAT_FIND, REPFIND

Syntax: REPEAT_FIND

Description: Repeat the last locate (L) command.

Default Key: c−f

Return Codes:

0
Successful completion

7
Target not found

15
No file left in edit ring

REPLACE

Syntax: REPLACE text

Description: Replace the contents of the current line with the supplied text.

Default Key: none

Return Codes:

0
Successful completion

12
Line is read only

15
No file left in edit ring

REPEAT_FIND, REPFIND 151

RESOLVE_FN

Syntax: RESOLVE_FN fn

Description: Resolve a supplied filespec into a format recognisable by the operating system,
as explained in File Specification. The resulting filename is displayed on the command line
as a message, which may be accessed by a macro through the EXTRACT
/LASTMSG/ command.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

RESTORE_FIND

Syntax: RESTORE_FIND

Description: Restore the previous find text and options. The old parameters are automatically
saved whenever a find command is issued.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

REVERSE_FIND

Syntax: REVERSE_FIND

Description: Repeat the previous find (Locate) command, but search in the opposite
direction. If the previous search was forwards through the file, this command causes a
backwards scan for the same text.

Default Key: c−v

Return Codes:

0

RESOLVE_FN 152

Successful completion
7

Target not found
15

No file left in edit ring

RINGWIN

Syntax: RINGWIN

Description: Display a popup window containing all the files in the ring. Modified files will
be displayed with the window_emphasis colour.

Default Key: c−f12

Return Codes:

0
Successful completion

15
No file left in edit ring

SAVE

Syntax: SAVE <newname /CR /CRLF /CRCRLF /LF /NOEA /NOTABS /T /U>

Description: Save the currently edited file to disk. If newname is supplied, the file will be
saved under that name. Otherwise, the current name will be used. The following flags are
available:

/CR
All lines are saved with a single Carriage Return (CR) terminating character.

/CRLF
All lines are saved with both a Carriage Return (CR) and a Line Feed (LF)
terminating character.

/CRCRLF
All lines are saved with two Carriage Returns (CR) and a Line Feed (LF) terminating
character.

/LF
All lines are saved with a single Line Feed (LF) terminating character.

/NOEA
Save the current file without saving extended attribute information.

/NOTABS
All lines will be scanned for tab characters, and any tabs found in the line will be
converted into blanks.

/T
Any line which contains 8 or more spaces will be saved with a tab character to take
the place of some or all of the blanks. The exception is blanks contained within

RINGWIN 153

quoted strings, which are not converted to tabs.
/U

All lines are saved with a single Line Feed (LF) terminating character, i.e. in Unix
format.

Default Key: f4

Return Codes:

0
Successful completion

−1
Insufficient memory

−2
Unable to open the file

−4
Unable to write the file

−10
Path not found

−11
Access denied (file attributes?)

1
File already exists

12
File is read only

15
No file left in edit ring

SCROLL

Syntax: SCROLL <UP DOWN LEFT RIGHT>

Description: Scroll the screen one unit in the specified direction. The default option is UP.

Default Key: none

Return Codes:

0
Successful completion

−1
Insufficient memory

−6
Invalid parameter

15
No file left in edit ring

SCROLL 154

SETRESULT

Syntax: SETRESULT text

Description: Set the value of the Rexx variable RESULT to the supplied text.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

SHADOW

Syntax: SHADOW <ON OFF>

Description: Turn the shadow line on or off. If no parameters are specified, the shadow
setting is toggled.

Default Key: c−s

Return Codes:

0
Successful completion

15
No file left in edit ring

SHADOWTEXT

Syntax: SHADOWTEXT <text>

Description: Change the default text that is displayed when the current line is hidden. If
SHADOW is ON and the current line is the first of a group of excluded lines, the supplied
text will be displayed instead of the normal "N line(s) not displayed" text. To remove the
shadow text from a line, simply omit any parameters.

Default Key: none

Return Codes:

0

SETRESULT 155

Successful completion
−1

Insufficient memory
−6

Invalid parameter
15

No file left in edit ring

SHELL

Syntax: SHELL <command>

Description: Shell to the operating system. If a command is supplied, it will be executed and
the editor automatically resumed. If the Shell command is issued directly from the editor
command line, a prompt message "Press any key to return to X2" will be displayed; or if the
command is issued from a macro no such message will be written. If no command is
supplied, an operating system prompt will be displayed. Typing exit will return to the editor
session.

On Windows or DOS systems, the shell command will try to execute the program named by
the environment variable COMSPEC, or simply COMMAND.EXE if COMSPEC isn't set.
Under OS/2, the shell command will try to execute the program named by the environment
variable OS2_SHELL, or CMD.EXE if OS2_SHELL isn't set.

Default Key: none

Return Codes:

0
Successful completion

SHOW

Syntax: SHOW <N *>

Description: Display the line at the cursor position. If N is supplied, then the next N lines will
be unexcluded. If N is an asterisk (*), all lines from the current line to the End Of File will be
displayed. If N is negative, lines will be excluded from the end of the excluded block. Note
that if SHADOW is OFF, this command will have no effect.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

SHELL 156

10
The cursor was not moved

15
No file left in edit ring

SHOWLINE

Syntax: SHOWLINE <N>

Description: Display the specified line. If N is supplied, then line number N will be
unexcluded, i.e. made visible. If N is absent, the current line will be unexcluded.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

SORT

Syntax: SORT <A D> <E C> <N>

Description: Sort the lines in the file. If a mark is present, only the marked lines are sorted. If
it is a block mark, the sort columns are bounded by the mark. The optional flags are:

A
Ascending sort (default)

D
Descending sort

E
Exact case sort (default)

C
Mixed case sort

N
Numeric sort. The data will be treated as signed numbers, so plus and minus signs
may be used.

Default Key: none

Return Codes:

0
Successful completion

SHOWLINE 157

−6
Invalid parameter

15
No file left in edit ring

SPAN

Syntax: SPAN <ON OFF>

Description: Turn the span setting on or off. If no parameters are specified, the span setting is
toggled.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

SPLIT

Syntax: SPLIT

Description: Split the current line at the cursor position.

Default Key: a−s

Return Codes:

0
Successful completion

15
No file left in edit ring

SPLITJOIN

Syntax: SPLITJOIN

Description: Split the line at the cursor position, or join with the next line if positioned after
the end of the line

Default Key: f2

Return Codes:

SPAN 158

0
Successful completion

15
No file left in edit ring

STATUS

Syntax: STATUS <ON OFF>

Description: Turn the status line on or off. If no parameters are specified, the status setting is
toggled.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

STATUSTEXT

Syntax: STATUSTEXT template

Description: Use the supplied template to draw the normal (full length, text mode) status line.
The template may include any of the following special identifiers:

\a
Substitute the current number of alterations since the last save

\c
Substitute the current file column number

\r
Substitute the current file row number

\t
Substitute the current file total number of rows

\x
Substitute the hexadecimal representation of the current file character

The default template is (note the trailing blank):

 "'\x'x Col=\c Row=\r of \t Alt=\a "

Default Key: none

Return Codes:

0

STATUS 159

Successful completion
−6

Invalid parameter
15

No file left in edit ring

STYLE

Syntax: STYLE

Description: Format the coding style for the current function. If text is marked, the style
formatting is restricted to the marked text. Requires styleword settings from the profile.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

18
Utilities DLL not loaded

SYNTAX

Syntax: SYNTAX <ON OFF>

Description: Turn syntax assistance on or off. If no parameters are specified, the setting is
toggled.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

TAB

Syntax: TAB <MATCH>

Description: Moves the cursor to the next tab position. If Insert mode and tab_insert are both
ON then spaces will be inserted up to the next tab position. If the MATCH parameter is
supplied, the cursor will be moved to align with the next blank−delimited word on the

STYLE 160

previous line. The same rules for inserting spaces apply with the MATCH parameter.

Default Key: tab

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

TABLINE

Syntax: TABLINE

Description: Inputs a special line containing a scale of the file columns, plus a letter "T" for
every hard tab stop and a "t" for each soft tab stop. You may overwrite this line with the
space, T, and t characters. If you do, when you move the cursor from the tab line the new tab
settings will be read from the line and it will be re−written. The tab increment value is taken
to be the first small "t" found after the last hard tab stop.

Default Key: none

Return Codes:

0
Successful completion

12
File is read only

15
No file left in edit ring

TABS

Syntax: TABS <n1 n2 n3...> <,m>

Description: Set/query tab settings, where n1, n2, n3 are hard tab settings and m is an
increment to generate soft tab settings. If no parameters are supplied, the current tab columns
are displayed. If n1 is the only number specified, tabs will be set every n1 spaces, beginning
in column 1. If the ,m parameter is specified, the tab settings will continue from the last stop
specified, every m spaces. Note that tab stops must be numeric and they must be specified in
ascending sequence. There is a limit of 31 tab settings for each file.

Default Key: none

Return Codes:

TABLINE 161

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

TIMER

Syntax: TIMER <<<hh:>mm:>ss cmd>

Description: Set a command to be executed every N seconds, where N is calculated from the
hours, minutes, and seconds specified as the first parameter. The values for hh, mm, and
ss must be numeric, but are not limited to 60, so for example, 100 may be specified to
execute a command every 100 seconds.

If no options are specified, any previous timer setting is cleared.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

TITLE

Syntax: TITLE text

Description: Set the window title for an X−Windows editor window to text. This command is
only available in the X−Windows Unix versions of the editor.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

TIMER 162

TOFEOF

Syntax: TOFEOF <ON OFF>

Description: Turn display of Top Of File and End Of File lines on or off. If no parameters are
specified, the setting is toggled.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

TOF_TEXT

Syntax: TOF_TEXT text

Description: Change the text used to mark the beginning of the current file

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

TOP

Syntax: TOP

Description: Move to the top line of the file

Default Key: c−home

Return Codes:

0
Successful completion

10
The cursor was not moved

TOFEOF 163

15
No file left in edit ring

TOPLINE

Syntax: TOPLINE N

Description: Position line N at the top of the screen

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

10
The cursor was not moved

15
No file left in edit ring

TOPSCREEN

Syntax: TOPSCREEN

Description: Move to the top line of the screen

Default Keys: c−pgup, a−up

Return Codes:

0
Successful completion

10
The cursor was not moved

15
No file left in edit ring

UNDO

Syntax: UNDO <N *>

Description: Undo the previously changed line(s) in the current file. If N is supplied, it
specifies the number of lines or blocks that will be restored. If N is an asterisk (*), all
changes back to the last save will be removed.

TOPLINE 164

Default Key: f9

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

20
End of undo stack

UNDO_BLOCK

Syntax: UNDO_BLOCK

Description: Treat all line changes up until the next undo_block as a single change for undo
purposes. This command is only valid when issued from a macro.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

UNDO_LIMIT

Syntax: UNDO_LIMIT N

Description: Set the undo limit for the current file to the value of N, where N may be any
positive or negative whole number.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

UNDO_BLOCK 165

UP

Syntax: UP <N *>

Description: Move the cursor up one row. If N is supplied, the cursor will be moved the
given number of lines. If N is an asterisk (*), the cursor will be moved to the Top Of File
line.

Default Key: up

Return Codes:

0
Successful completion

−6
Invalid parameter

9
Cursor at TOF/EOF line

15
No file left in edit ring

WINDOW

Syntax: WINDOW [_RESET rows cols maxlines title]

Description: Create a popup window with rows number of rows, cols number of columns,
and set aside space for maxlines total lines. The window title will be title, which is limited in
length to the width of the window minus the space required to show the line number. Note
that the window will be empty until lines are added to it with the WINLINE command.

If the _RESET option is used, a previous window definition will be cleared. User Defined
Popup Window contains more information about popup windows.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

23
Popup window already defined

UP 166

WINLINE

Syntax: WINLINE linetext\nselcmd

Description: Add a line to a user defined popup window. linetext defines the text to appear on
the window, and selcmd is the command that will be executed if the line is selected. During
processing, all occurrences of double backslashes ("\\") are converted to single backslashes
and the following character is ignored. This allows input of text containing "\n" in either
linetext or selcmd.

linetext may contain control sequences to modify the colour used in the line. Each sequence
must begin with the escape character, and is followed by one of:

B (Bold)
Display the following text with the window_bold colour

E (Emphasis)
Display the following text with the window_emphasis colour

S (Selection)
Use the following character as the key for list selection from the keyboard

T (Text)
Display the following text with the window_data colour

Escape char
Display two escape characters as a single escape character

This command can return −6 (invalid parameter) under any of the following conditions:

If no text was supplied ◊
If the supplied text doesn't contain the separator text "\n"◊
If a user popup window hasn't been defined ◊
If the maximum number of lines has been exceeded ◊

User Defined Popup Window contains more information about popup windows. ESCAPE
Character discusses setting the escape character in the user profile. See Appendix B. Sample
Macro to Create a Popup Window for an example macro that uses WINLINE commands to
create a popup window.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

WINLINE 167

WINSELECT

Syntax: WINSELECT <N>

Description: Select line N in a user defined popup window, where N must be numeric. If N is
greater than the total number of rows in the window, the last window line is selected. If N is
omitted, the last entered WINLINE will be selected.

Default Key: none

Return Codes:

0
Successful completion

−6
Invalid parameter

15
No file left in edit ring

21
No popup window defined

WINSORT

Syntax: WINSORT <A D>

Description: Sort the lines in a user defined popup window. The optional parameters are used
to define an Ascending or Descending sort, where the default is Ascending. Lines will be
sorted by Selection escape sequence if defined, or by the first character of the line if not. If a
previous WINSELECT command has been issued, the selected line will move with the sort
to maintain the same line contents.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

21
No popup window defined

WINWAIT

Syntax: WINWAIT

WINSELECT 168

Description: Wait for an existing popup window to be dismissed. Useful to allow a macro to
display a window and wait for a response without losing control. Best used in conjunction
with the SETRESULT command to get a response.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

17
User quit the function

21
No popup window defined

WRAP

Syntax: WRAP <ON OFF>

Description: Turn the wrap setting on or off. If no parameters are specified, the wrap setting
is toggled.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

nnn

Syntax: nnn

Description: Move the cursor to line nnn of the file. If nnn is larger than the file size, the
cursor is moved to the last line of the file.

Default Key: none

Return Codes:

0
Successful completion

15
No file left in edit ring

WRAP 169

16
Target line is hidden

/text</< |/& /text2/>>

Syntax: /text</< |/& /text2/>> −mecflqs

Description: A short form for the L command to locate text. See Locate Text for details.

Default Key: none

Return Codes: See Locate Text

Command Summary

The following tables contain an entry for each command that is recognised by the X2 Editor
command line. Commands that are supported by the OS/2 version are marked with a check
mark (´) in the first column, commands that are supported under Windows NT/95 are marked
in the second column, and supported DOS commands are marked in the third column.
Supported Unix commands are marked in the last column, where Unix commands apply to
the Linux, AIX 4.1, AIX 4.2, SunOS, and HP−UX operating systems if Rexx is installed.

Command Summary (A−H)◊
Command Summary (I−P)◊
Command Summary (Q−Z)◊

Command Summary (A−H)

Command OS/2 Windows
 NT/95 DOS Unix

ACCENT ´

ADD ´ ´ ´ ´

ALL ´ ´ ´ ´

ALT ´ ´ ´ ´

APPEND ´ ´ ´ ´

ASCII ´ ´ ´ ´

AUTOBOOKMARK ´ ´ ´ ´

AUTOSAVE ´ ´ ´ ´

BACKSPACE ´ ´ ´ ´

BACKTAB ´ ´ ´ ´

BACKWARD ´ ´ ´ ´

/text</< |/& /text2/>> 170

BOOKMARK ´ ´ ´

BOTTOM ´ ´ ´ ´

BOTTOMSCREEN ´ ´ ´ ´

BROWSE ´ ´ ´ ´

C ´ ´ ´ ´

CASECHAR ´ ´ ´

CASEWORD ´ ´ ´ ´

CD ´ ´ ´

CENTRELINE ´ ´ ´ ´

CENTRETEXT ´ ´ ´ ´

CHANGE ´ ´ ´ ´

CHANGES ´ ´ ´ ´

CLIP ´ ´

CMDLINE ´ ´ ´ ´

CMDTEXT ´ ´ ´ ´

COMMAND ´ ´ ´

COMMENTLINE ´ ´ ´

COMMENT_STYLE ´ ´ ´ ´

COMPARE ´ ´ ´

CONDITIONAL ´ ´ ´ ´

COPYLINE ´ ´ ´ ´

COPYTOCMD ´ ´ ´ ´

COUNT ´ ´ ´

CURR_ALT_PFLINE ´ ´ ´

CURR_CTRL_PFLINE ´ ´ ´

CURR_PFLINE ´ ´ ´

CURR_SHIFT_PFLINE ´ ´ ´

CURSOR ´ ´ ´ ´

DATE ´ ´ ´ ´

DELCHAR ´ ´ ´ ´

DELDUPES ´ ´ ´ ´

DELETE ´ ´ ´

DELSYM ´ ´ ´ ´

DELWORD ´ ´ ´ ´

DIAG ´ ´ ´

/text</< |/& /text2/>> 171

DOWN ´ ´ ´

DUPLICATES ´ ´ ´ ´

E ´ ´ ´ ´

EA ´ ´ ´

EDIT ´ ´ ´ ´

EOF_TEXT ´ ´ ´ ´

ERASEEOL ´ ´ ´ ´

ERRORS ´ ´ ´ ´

EXCLUDE ´ ´ ´

EXITRC ´ ´ ´

EXPAND ´ ´ ´ ´

EXT ´ ´ ´ ´

EXTRACT ´ ´ ´

FFILE ´ ´ ´

FIELDTEMPLATE ´ ´ ´

FILE ´ ´ ´ ´

FIND_WORD ´ ´ ´ ´

FORWARD ´ ´ ´ ´

FT ´ ´ ´ ´

FUNCWIN ´ ´ ´ ´

GET ´ ´ ´ ´

HELP ´ ´ ´ ´

HEX ´ ´ ´

HIDEFILE ´ ´ ´

Command Summary (I−P)

Command OS/2 Windows
 NT/95 DOS Unix

INPUT ´ ´ ´ ´

INPUT_ERRORLINE ´ ´ ´

INSMODE ´ ´ ´

JOIN ´ ´ ´ ´

KEY ´ ´ ´

Command Summary (I−P) 172

KEYIN ´ ´ ´ ´

KEYIN_NAME ´ ´ ´ ´

KEYS_PLAY ´ ´ ´

KEYS_RECORD ´ ´ ´ ´

KEYS_WRITE ´ ´ ´

L ´ ´ ´ ´

LINECOLOUR ´ ´ ´

LINEFIELDS ´ ´ ´

LINEMACRO ´ ´ ´

LINEND ´ ´ ´ ´

LOCATE ´ ´ ´ ´

MA ´ ´ ´ ´

MACRO ´ ´ ´ ´

MARGINS ´ ´ ´ ´

MARK ´ ´ ´ ´

MATCH ´ ´ ´ ´

MESSAGEBOX ´ ´ ´

MSG ´ ´ ´

MSGMODE ´ ´ ´ ´

NAME ´ ´ ´ ´

NEXT ´ ´ ´ ´

NEXT_ERROR ´ ´ ´ ´

NEXT_FILE ´ ´ ´ ´

NEXT_FUNC ´ ´ ´ ´

NEXT_PARA ´ ´ ´ ´

NEXT_SENTENCE ´ ´ ´ ´

NEXT_SYM ´ ´ ´ ´

NEXT_WORD ´ ´ ´ ´

NOP ´ ´ ´ ´

NUMFILES ´ ´ ´

OPENFILE ´ ´ ´ ´

PAGEDOWN ´ ´ ´ ´

PAGEUP ´ ´ ´ ´

PASSWORD ´ ´ ´

PFLINE ´ ´ ´

Command Summary (I−P) 173

PLAYBACK ´ ´ ´

PRESSKEY ´ ´ ´

PREVIOUS_FILE ´ ´ ´ ´

PREVIOUS_FUNC ´ ´ ´ ´

PREVIOUS_PARA ´ ´ ´ ´

PREVIOUS_SYM ´ ´ ´ ´

PREVIOUS_WORD ´ ´ ´ ´

PROMPT ´ ´ ´

PUT ´ ´ ´ ´

Command Summary (Q−Z)

Command OS/2 Windows
 NT/95 DOS Unix

QQ ´ ´ ´ ´

QQUIT ´ ´ ´ ´

QUIT ´ ´ ´ ´

REDO ´ ´ ´ ´

REFORMAT ´ ´ ´ ´

REFRESH ´ ´ ´ ´

RENAME ´ ´ ´ ´

REPEAT_FIND ´ ´ ´ ´

REPFIND ´ ´ ´ ´

REPLACE ´ ´ ´

RESOLVE_FN ´ ´ ´ ´

RESTORE_FIND ´ ´ ´ ´

REVERSE_FIND ´ ´ ´ ´

RINGWIN ´ ´ ´ ´

SAVE ´ ´ ´ ´

SCROLL ´ ´ ´ ´

SETRESULT ´ ´ ´

SHADOW ´ ´ ´ ´

SHADOWTEXT ´ ´ ´

SHELL ´ ´ ´ ´

Command Summary (Q−Z) 174

SHOW ´ ´ ´

SHOWLINE ´ ´ ´ ´

SORT ´ ´ ´ ´

SPAN ´ ´ ´ ´

SPLIT ´ ´ ´ ´

SPLITJOIN ´ ´ ´ ´

STATUS ´ ´ ´

STATUSTEXT ´ ´ ´

STYLE ´ ´ ´

SYNTAX ´ ´ ´

TAB ´ ´ ´

TABLINE ´ ´ ´ ´

TABS ´ ´ ´

TIMER ´ ´ ´

TITLE ´

TOFEOF ´ ´ ´

TOF_TEXT ´ ´ ´ ´

TOP ´ ´ ´ ´

TOPLINE ´ ´ ´ ´

TOPSCREEN ´ ´ ´ ´

UNDO ´ ´ ´ ´

UNDO_BLOCK ´ ´ ´

UNDO_LIMIT ´ ´ ´ ´

UP ´ ´ ´

WINDOW ´ ´ ´ ´

WINLINE ´ ´ ´ ´

WINSELECT ´ ´ ´

WINSORT ´ ´ ´ ´

WINWAIT ´ ´ ´ ´

WRAP ´ ´ ´ ´

X ´ ´ ´ ´

nnn ´ ´ ´ ´

Command Summary (Q−Z) 175

Hexadecimal Mode Considerations
If an input file contains the null character or Hexadecimal mode has been initiated with the Alt−H key, the
display changes to show the input file as a sequence of 16 byte "lines". Two views of each line are shown: a
set of four groups of eight hexadecimal integers each, and the character representation of the line. An
example of hexadecimal mode representation of a file is shown in the following figure.

 54686520 71756963 6B206272 6F776E20 * The quick brown
 666F7820 6A756D70 73206F76 65722074 * fox jumps over t
 6865206C 617A7920 646F672E 0D0A0D0A * he lazy dog.CRLF

Hexadecimal Mode Screen Layout

In the above example, CRLF represents two carriage return/line feed pairs. Changes can be made to either
representation of the line. When moving the cursor over the file, a shadow cursor is displayed which follows
the real cursor on the opposite representation of the line. When the cursor is on the hex representation, the
shadow cursor will show the equivalent position on the character portion. When the cursor is on the character
representation of the line, the shadow cursor will show the position in the hex portion.

When replacing characters in Hexadecimal mode, the cursor position is important. When over one of the hex
sections of the line, only the characters 0−9 and A−F are valid. Lower case letters are converted to upper
case. The replacement causes the hexadecimal value of the character at that position to be changed. This
change will be reflected in the text section of the line. If the cursor is positioned over the text portion of the
line, no conversion is done and all characters are valid. The hexadecimal representation of the character will
be changed in the hex section.

In text mode the status line shows the row and column of the cursor in the file, where column 1 starts at the
left edge of the screen. In hex mode the offset in bytes from the beginning of the file is shown instead. The
offset will increment by one for every two hex characters on the line, until the cursor reaches the text section.
Then it will increase normally until it reaches the end of the text section.

Some default keys will work differently in Hexadecimal mode; most notably, you cannot insert or delete
characters in hex mode. The full list of changed keys is outlined below.

Cursor Left
Moves the cursor left one character, unless the cursor would move to a non−modifiable section of the
line. If so, it moves to the end of the previous modifiable section. The cursor will remain in either the
hexadecimal or text portion of the screen; when the left edge of either section is reached the cursor is
moved to the right edge of the same section, on the previous line.

Cursor Right
Moves the cursor right one character, unless the cursor would move to a non−modifiable section of
the line. If so, it moves to the left edge of the next modifiable section. The cursor will remain in
either the hexadecimal or text portion of the screen; when the right edge of either section is reached
the cursor is moved to the left edge of the same section, on the next line.

Delete
Does nothing.

End
Moves the cursor to the right edge of the text view area.

Hexadecimal Mode Considerations 176

Home
Moves the cursor to the left edge of the first hexadecimal input area.

Insert
Does nothing.

Tab
Moves the cursor to the beginning of the next input section on a line.

Shift−tab
Moves the cursor to the beginning of the previous input section on a line.

Ctrl−Backspace
Does nothing.

Ctrl−Cursor Left
Moves the cursor to the beginning of the previous input section on a line.

Ctrl−Cursor Right
Moves the cursor to the beginning of the next input section on a line.

Ctrl−Enter
Does nothing.

Alt−7
Does nothing.

Alt−8
Does nothing.

Hexadecimal Mode Considerations 177

Editor Differences Between Operating Systems
Differences in the Windows NT/95 Version♦
Differences in the DOS Version♦
Differences in the Unix X−Windows Versions♦
Differences in the Linux Curses Version♦

Most of the above commentary describes the behaviour of the OS/2 version of the X2 Editor. In most
cases, it applies equally well to all versions; however, there are differences between the versions
which are driven by operating system differences or environmental limitations. This section outlines
the main differences, using the OS/2 version as the reference point. Note that some commands are
not supported in all versions; a summary of each command and its supported platforms can be found
in Command Summary.

Differences in the Windows NT/95 Version♦
Differences in the DOS Version♦
Differences in the Unix X−Windows Versions♦
Differences in the Linux Curses Version♦

Differences in the Windows NT/95 Version

The Windows NT and Windows 95 operating systems do not support file extended attributes, so the
editor must use a different technique to remember file settings between edit sessions. The EA
information is saved in a file called XEAINFO.DTA in the directory specified by the XPATH. This
technique has the disadvantage that EA data is not transferred with a file when it is copied or moved
to a different directory, or if it is renamed. Also, the XEAINFO.DTA file will continually grow larger
as files are edited and then deleted from the system.

The Alt−Enter key is usurped by the operating system to toggle the DOS window between a
Windowed and FullScreen session, so it is not available to the editor.

Differences in the DOS Version

The main differences between the DOS version and the OS/2 version are the lack of macro support
and the memory management routines. The DOS version does not support Rexx macros; therefore
many of the commands that are only useful from macros are undefined. These are outlined in
Command Summary.

The DOS file system does not support long filenames, nor extended attributes. Therefore the editor's
ability to remember file settings such as cursor position does not apply to this version.

The DOS version is restricted to a 640K memory address space, which makes it difficult to edit large
files.

The PATHS profile option is not supported under DOS.

Editor Differences Between Operating Systems 178

Differences in the Unix X−Windows Versions

The Unix versions are the only versions that run in a true windowed session. As such, the screen size
may be changed simply by re−sizing the window with the mouse. Care must be taken with the
Alt−F4 key, and also with the system menu on the X−Windows screen. Either one can cause your
editing session to be terminated, without any warning about loss of data.

The Unix versions are the only versions to support the xwindows_font profile variable to change the
screen font, and the x−colour profile setting to change the X−Windows colour mappings.

The X−Windows versions are the only versions in which the editor draws the cursor instead of using
the system cursor. It is drawn with a line to represent the Replace mode cursor, and as a box around
the current character when in Insert mode. These versions use the xwindows_cursor colour variable
to draw the cursor.

Differences in the Linux Curses Version

The Linux version comes in two flavours: a curses based fullscreen version that is primarily intended
for emergency or quick use; and an X−Windows version that provides a much nicer editing
environment. It is recommended that you use the X−Windows version whenever possible; the above
text describing differences in the Unix X−Windows versions applies equally well to the X−Windows
version on Linux.

The Linux fullscreen version uses curses for screen and keyboard support. The curses support is not
ideal; many keystrokes are not supported, and only eight colours are available. The curses version
colours are mapped according to the following table.

Profile Colour Mapped Colour

Black Black

Blue Blue

Brown Yellow

Cyan Cyan

Dark Grey Black

Green Green

Light Blue Blue

Light Cyan Cyan

Light Green Green

Light Grey White

Light Magenta Magenta

Light Red Red

Magenta Magenta

Differences in the Unix X−Windows Versions 179

Red Red

White White

Yellow Yellow

Many keystrokes are unrecognised or changed under the Linux curses version. These include:

The ctrl−arrow, ctrl−enter, and ctrl−keypad keys are dead ♦
F11 is interpreted as shift−F1, and F12 as shift−F2 ♦
Ctrl−F keys are interpreted as the base F keys ♦
The left Alt key works as expected, except the Alt F keys are intercepted by the Operating
System

♦

The right Alt key has no effect ♦

Other changes in the Linux version include:

The changing PF display that occurs when one of the shift keys is pressed and held down
does not work. The only PF line that is displayed is the unshifted one which is defined in the
user profile.

♦

There seems to be no support for a big cursor, so the cursor is the same whether in Insert or
Replace mode. You need to check the Ins/Rep indicator in the top right corner.

♦

Displaying characters with a value of 0x80 or higher causes a flashing string of characters to
be shown

♦

Differences in the Unix X−Windows Versions 180

Appendix A. Rexx Program to Measure Editor Load
Times
/***/
/* */
/* Test the execution time of three editors. We need the following files */
/* in the current directory: */
/* */
/* T1, T2, T3 − Sample data files */
/* E.EXE − EOS2 editor */
/* E.EX − EOS2 default profile */
/* T2.EXE − T editor, OS/2 version */
/* X.EXE − X2 Editor */
/* */
/* Written by B. Thompson, December 31, 1993 */
/* */
/***/

 Say 'You will have to press F3 27 times quickly for this test...'
 Parse Pull .
 Call check_editor 'T1' /* Small file*/
 Call check_editor 'T2' /* Medium file*/
 Call check_editor 'T3' /* Large file*/
 Call lineout 'TESTTIME.OUT' /* Close output file*/
 Say 'Results are in TESTTIME.OUT'
Exit

/***/
/* */
/* Check each editor against a supplied filename. We do three iterations */
/* for each editor, and average the results. */
/* */
/***/

CHECK_EDITOR: Procedure
 Parse Arg fn .
 Call lineout 'TESTTIME.OUT', 'Testing against' fn
 total. = 0 /* Initialise totals*/
 Do iteration = 1 To 3
 total._e = total._e + timeit('E' fn)
 total._t = total._t + timeit('T2' fn)
 total._x = total._x + timeit('X' fn)
 End /* End do*/
 Call lineout 'TESTTIME.OUT', ' Average time for E was' ,
 Format(total._e / 3,2,2) 'seconds'
 Call lineout 'TESTTIME.OUT', ' Average time for T was' ,
 Format(total._t / 3,2,2) 'seconds'
 Call lineout 'TESTTIME.OUT', ' Average time for X2 was' ,
 Format(total._x / 3,2,2) 'seconds'
Return

/***/
/* */
/* Invoke the editor and time the execution. The user will have to queue */
/* some F3 keystrokes to make sure we quit as soon as the file is loaded */
/* in each editor. */
/* */

Appendix A. Rexx Program to Measure Editor Load Times 181

/***/

TIMEIT: Procedure
 Parse Arg editor fn .
 Call Time('R') /* Start a timer*/
 editor fn
Return Time('E')

Appendix A. Rexx Program to Measure Editor Load Times 182

Appendix B. Sample Macro to Create a Popup
Window
/***/
/* */
/* Create and manage a popup window to enter bookmaster tags into a file. */
/* The WINLINE command requires that the window text be separated from the */
/* resulting command by the text "\n". This macro is a sample to show how */
/* to use the editor's popup window interface. */
/* */
/* Requires version 1.61 or later of the editor. */
/* */
/* Written by B. Thompson, June 7, 1995 */
/* Fix problem inserting bookie tag at beginning of line, April 29, 1996 */
/* Insert tag around block mark, April 29, 1996 */
/* Updated to illustrate bold and emphasised attributes, August 30, 1996 */
/* */
/***/

 Parse source . . macroname '.' . /* Who are we?*/
 Parse Arg parm .

 Select
 When parm = 'HP1' | parm = 'HP2'
 Then Do /* Italics*/
 gml_tag = 'hp' || substr(parm,3) || '.'
 'EXTRACT /CURLINE/'
 'EXTRACT /CURSOR/'
 'EXTRACT /MARK/'
 wordlen = 0
 If (mark.0 > 0) & (mark.2 = mark.3) & (mark.4 > 0)
 Then Do /* Tag the marked block*/
 cursor.2 = mark.4 − 1
 wordlen = mark.5 − mark.4 + 1
 End
 Else Do While Substr(curline.1,cursor.2,1) <> ' '
 cursor.2 = cursor.2 − 1
 If cursor.2 = 0
 Then Leave /* We hit the beginning of the line*/
 End /* End do*/
 If cursor.2 > 0
 Then Do
 beginning = Substr(curline.1,1,cursor.2)
 ending = Substr(curline.1,cursor.2+1)
 End
 Else Do
 beginning = ''
 ending = curline.1
 End
 If wordlen > 0
 Then Do /* Parse over the mark*/
 word = Substr(ending,1,wordlen)
 ending = Substr(ending,wordlen+1)
 End
 Else Do
 Parse Var ending word ending
 ending = ' 'ending /* Put the blank back in*/
 End
 'REPLACE' beginning':'gml_tag || word || ':e'gml_tag || ending

Appendix B. Sample Macro to Create a Popup Window 183

 If wordlen > 0
 Then Do /* Move the mark*/
 'CURSOR' mark.2 mark.4 + length(gml_tag) + 1
 'MARK BLOCK'
 'CURSOR +0 +'wordlen − 1
 'MARK BLOCK'
 End
 End
 Otherwise Do /* Create the window*/
 'EXTRACT /ESCAPE/'
 'WINDOW 6 50 6 Bookmaster Tags'
 'WINLINE Head level 0 (h0)\nKEYIN :h0.'
 'WINLINE Head level 1 (h1)\nKEYIN :h1.'
 'WINLINE Head level 2 (h2)\nKEYIN :h2.'
 'WINLINE Head level 3 (h3)\nKEYIN :h3.'
 'WINLINE' escape.1'EItalics' escape.1'T(hp1)\nMACRO' macroname 'HP1'
 'WINLINE' escape.1'BBold' escape.1'T(hp2) \nMACRO' macroname 'HP2'
 End
 End /* End select*/
Exit

Appendix B. Sample Macro to Create a Popup Window 184

Appendix C. Sample Profile for EOS2 Users
/***/
/* */
/* XPROFILE.E − Sample profile for configuring the X2 Editor so it looks */
/* and behaves as closely as possible to the default EOS2 configuration. */
/* This is not a perfect mapping since not all EOS2 functions are */
/* reproduced in X2. */
/* */
/* If you have Rexx available, you may wish to set key f6 to "Macro boxes" */
/* to get drawing capabilities. Boxes.x is available through xmacros.zip. */
/* */
/* This profile may be run standalone or as overrides to the default */
/* profile, depending on whether syntax assistance is required: */
/* */
/* xprofile xprofile.e − No syntax assistance */
/* xprofile xprofile.def xprofile.e − Syntax assistance */
/* */
/***/

key a−b = Mark Block Extend
key a−l = Mark Line Extend
key a−1 = Openfile
key a−f10 = Previous_File
key c−del = EraseEOL
key c−enter = Cursor +1 0
key enter = Input
key f2 = Save
key f4 = File
key f5 = Nop
key f6 = Nop
key f7 = Rename
key f8 = "CmdText EDIT "
key f10 = Next_File
key pgdn = Forward
key pgup = Backward

PFLine = "F1=Help 2=Save 3=Quit 4=File 7=Name 8=Edit 9=Undo 10=Next"
s−PFLine = "F1=�Scrl 2=Scrl� 3=Scrl� 4=Scrl� 5=CenterLine "
c−PFLine = " 3=UpperMark 4=LowerMark "
a−PFLine = " 10=Prev"

colour alt_keywords = Light Grey on Blue
colour browse_data = Light Grey on Blue
colour command = Light Grey on Brown
colour command_stack = Light Grey on Brown
colour comment = Light Grey on Blue
colour data = Light Grey on Blue
colour filename = Light Grey on Black
colour pfline = Cyan on Black
colour highlight = Light Grey on Blue
colour keywords = Light Grey on Blue
colour mark = Blue on Light Grey
colour message = Light Red on Black
colour mod_filename = Red on Black
colour quotes = Light Grey on Blue
colour shadow_cursor = Black on Brown
colour status = Light Grey on Black
colour tofeof = Light Grey on Blue

Appendix C. Sample Profile for EOS2 Users 185

extension = *
comment_formatting = NONE
alt_highlight_kw = _RESET
highlight_keyword = _RESET

Appendix C. Sample Profile for EOS2 Users 186

	Table of Contents
	Preface - Acknowledgements
	General Information
	Editor Philosophy
	Features
	Cursor Positioning
	Enter Key Behaviour
	PF Display Line
	Popup Command Line and Command Stack

	Installation
	OS/2 Installation
	Windows NT/95 Installation
	DOS Installation
	Linux Installation
	Linux390 Installation
	AIX Installation
	Sun Solaris Installation
	HP-UX Installation

	Invoking The Editor
	File Specification

	Performance
	Editor Performance Comparison - File Load
	 Quit

	Popup Windows
	Ring Contents List
	File Functions List
	User Defined Popup Window

	File Margins
	Comment Formatting
	Inline Comments
	Block Comments
	Comment Manipulation

	Highlighting
	Comment Highlighting
	Keyword Highlighting
	Cursor Line Highlighting

	Splitting Text
	Auto-Flow

	Compiler Errors
	Hidden Lines
	Saved File Information
	Marking Text
	Recorded Key Sequences
	Automatic Binary File Detection
	Editor Settings
	BROWSE
	EA
	HEX
	INSMODE
	LINEND
	MSGMODE
	SHADOW
	SPAN
	STATUS
	SYNTAX
	WRAP

	Tutorial
	Screen Areas
	Sample Edit Session
	Basic Navigation
	Marking
	The Command Line
	Hidden Lines

	Default Key Assignments
	Unshifted Keys
	Alphanumeric Keys
	Function Keys
	Special Character Keys
	Special Keys

	Shifted Keys
	Alphanumeric Keys
	Function Keys
	Special Character Keys

	Control Keys
	Alphanumeric Keys
	Function Keys
	Special Character Keys

	Alternate Keys
	Alphanumeric Keys
	Function Keys
	Special Character Keys

	User Profile
	Creating The User Profile
	Comments
	Key Remapping
	User Profile Key Remap

	Colour Remapping
	Colour Remapping
	X-Windows Colour Remapping

	Strings
	Synonyms
	Bracket Matching Characters
	Initial Editor Settings
	Newline Character
	Cursor Size
	Saving Editor Information
	Enter Key Behaviour
	Insert Mode
	Linend Setting
	Popup Window Scrolling
	Quick Bookmark Setting
	Status Line
	Automatic Bookmarks
	Multiple Bookmarks
	Command Line Location
	Command Stack Window Size
	Default Extension
	Default List
	Escape Character
	Filename Completion Threshold
	Linend Character
	Null Character
	OpenFile Paths
	Quit Response When File Modified
	Right Alt (AltGr) Key
	Shell Prompt String
	Beep Behaviour
	X-Windows Font

	Disk Specific Customisation
	User Profile Disk Customisation

	File Extension Specific Customisation
	Default Extension
	Inline Comment Formatting Control
	Code Functions List
	Syntax Expansion
	Conditional Strings
	Customising the OpenFile Function
	Style Formatting
	User Profile Extension Customisation

	Commands and Macro Support
	Macro Debugging
	EXTRACT Command
	Extract Options

	Locate Text
	Change Text
	Popup Windows
	List Box
	Message Box
	Prompt
	Password Prompt

	Editor Commands
	ACCENT
	ADD
	ALL
	ALT
	APPEND
	ASCII
	AUTOBOOKMARK
	AUTOSAVE
	BACKSPACE
	BACKTAB
	BACKWARD
	BOOKMARK
	BOTTOM
	BOTTOMSCREEN
	BROWSE
	C, CHANGE
	CASECHAR
	CASEWORD
	CD
	CENTRELINE
	CENTRETEXT
	CHANGES
	CLIP
	CMDLINE
	CMDTEXT
	COMMAND
	COMMENTLINE
	COMMENT_STYLE
	COMPARE
	CONDITIONAL
	COPYLINE
	COPYTOCMD
	COUNT
	CURR_ALT_PFLINE
	CURR_CTRL_PFLINE
	CURR_PFLINE
	CURR_SHIFT_PFLINE
	CURSOR
	DATE
	DELCHAR
	DELDUPES
	DELETE
	DELSYM
	DELWORD
	DIAG
	DOWN
	DUPLICATES
	E, EDIT, X
	EA
	EOF_TEXT
	ERASEEOL
	ERRORS
	EXCLUDE
	EXITRC
	EXPAND
	EXT
	EXTRACT
	FFILE
	FIELDTEMPLATE
	FILE
	FIND_WORD
	FORWARD
	FT
	FUNCWIN
	GET
	HELP
	HEX
	HIDEFILE
	INPUT
	INPUT_ERRORLINE
	INSMODE
	JOIN
	KEY
	KEYIN
	KEYIN_NAME
	KEYS_PLAY, PLAYBACK
	KEYS_RECORD
	KEYS_WRITE
	L, LOCATE
	LINECOLOUR
	LINEFIELDS
	LINEMACRO
	LINEND
	MA, MARGINS
	MACRO
	MARK
	MATCH
	MESSAGEBOX
	MSG
	MSGMODE
	NAME
	NEXT, NEXT_FILE
	NEXT_ERROR
	NEXT_FUNC
	NEXT_PARA
	NEXT_SENTENCE
	NEXT_SYM
	NEXT_WORD
	NOP
	NUMFILES
	OPENFILE
	PAGEDOWN
	PAGEUP
	PASSWORD
	PFLINE
	PRESSKEY
	PREVIOUS_FILE
	PREVIOUS_FUNC
	PREVIOUS_PARA
	PREVIOUS_SYM
	PREVIOUS_WORD
	PROMPT
	PUT
	QQ, QQUIT
	QUIT
	REDO
	REFORMAT
	REFRESH
	RENAME
	REPEAT_FIND, REPFIND
	REPLACE
	RESOLVE_FN
	RESTORE_FIND
	REVERSE_FIND
	RINGWIN
	SAVE
	SCROLL
	SETRESULT
	SHADOW
	SHADOWTEXT
	SHELL
	SHOW
	SHOWLINE
	SORT
	SPAN
	SPLIT
	SPLITJOIN
	STATUS
	STATUSTEXT
	STYLE
	SYNTAX
	TAB
	TABLINE
	TABS
	TIMER
	TITLE
	TOFEOF
	TOF_TEXT
	TOP
	TOPLINE
	TOPSCREEN
	UNDO
	UNDO_BLOCK
	UNDO_LIMIT
	UP
	WINDOW
	WINLINE
	WINSELECT
	WINSORT
	WINWAIT
	WRAP
	nnn
	/text</< |/& /text2/>>

	Command Summary
	Command Summary (A-H)
	Command Summary (I-P)
	Command Summary (Q-Z)

	Hexadecimal Mode Considerations
	Editor Differences Between Operating Systems
	Differences in the Windows NT/95 Version
	Differences in the DOS Version
	Differences in the Unix X-Windows Versions
	Differences in the Linux Curses Version

	Appendix A. Rexx Program to Measure Editor Load Times
	Appendix B. Sample Macro to Create a Popup Window
	Appendix C. Sample Profile for EOS2 Users

